Requires six “AA” batteries

For Ages 12 to Adult

TABLE OF CONTENTS

INTRODUCTION e e e e s e e 5 Checkingthedata ot 19
Featuresand Controls i it ittt i et i e 6 Starting AutomaticPlay o 20
The MiCroprocCessor . . . v v v vt ettt i e i it e e 7 Error Correction . . o v it it e e e 21
Stopping and Restartingthe Tune 22
WIRING ..t e e 8 ChangingtheSpeedo 22
Binary LEDs LightingCheck 9 Stopping After One Performance 22
HEX. LED LightingCheck 9 Lengths of Notesand Rests. 23 (
CPUCheck 10 Writingin Your OwnTune, 23
Binary LEDs 10 Silent Night e 24 ~ 25
HEX.LEDs e e 11 Yankee Doodle. 26~ 27
Speaker AMp 12 No. 3 Musical GuessingGame 28
No.4 “RatBashing’ttt 29
LET'S COUNT IN COMPUTER. e 12 NO.5 Tennis Game . . . o o vttt et e e et e e e 30
The Binary System 12 NO.B TIMEE « v v o e e e e e e e e et e e e 31
Binary to Decimal Conversion 13 No.7 Morse Code. o vt it e e e e e e e 32~33
Adding Binary Numbers L. 14 ,
Subtracting inBinaryo 14 PROGRAMMING THE MICROCOMPUTER/GROUP 1 COMMANDS. . 34
The Hexadecimal System 14 No.8 Useof TIAand AOtoturnonthe HEX.LED 35
Decimal to Hex Conversion. 14 No. 9 Use of CH and JUMP to display O and 1 alternately 36~38
Hexadecimal Arithmetic. 15 No. 10 Use of KA to transfer data from keyboard to display 39~40
Iv No. 11 Use of AlA to add numbers together 41~42
MICROGAMES e 17 No. 12 Display hex numbers in ascendingorder 43~44
No.1 ElectronicOrgan 17 No. 13 Display odd hex numbers in ascending order 45
No.2 Automatic Tunes.o 18 No. 14 Display even hex numbers in ascending order, once only . . .46
Keyinginthe Tune, 18 No. 15 Display decimal numbers in ascending order, once only . . . 47

No.
No.

No.
No.
No.
No.

GROUP 2 COMMANDS
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.

No.

16
17

18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

¥

Display odd decimal numbers, onceonly 48

Repeated display of even decimat numbers,

inascendingorder 49

Repeated display of decimal numbers in descending order . 50

Display hex numbers in descending order, onceonly 51~52

Electronic Dice —stops when key inreleased 53

Elgctronic Dice —stops when key ispressed 54
................................ 55

Use of TIY, AlY, and AM to store data in memory 56~57

Use of MA to display memory contents 58

Use of M+ to add to displayed numbers 59

Use of M-~ to reduce a displayed value 60

Useof CALTIMR i 61

Load zerointomemory, 62

Load O-Fintomemory 63

Load F-Ointomemory 64

Decimal counting in ascendingorder 65

Decimal counting in descendingorder 66

Hex addition (1) —one digit + one digit = one digit 67

Hex addition {2) —one digit + one digit = two digits 68~69

Hex to decimal conversion (A-F). 70

Hex to decimal conversion (O-F} 71

Decimal addition —one digit + one digit = two digits 72

Hex subtraction with decimal conversion —one digit

minusonedigit 73

Hex addition with decimal conversion —one digit

No. 39
No. 40

No. 41

No.

GROUP 3 COMMANDS
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.

No.

No.
No.

42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58

59
60

+ one digit = two digits

Hex multiplication —one digit x one digit = two digits

Decimal multiplication

Decimal subtraction —one digit minus one digit

Division—one digit divided by onedigit

Useof CALCMPL
Useof CIA
Use of CY
Turn on binary LEDs from right to left

Turn on alternate binary LEDs from right to left

Turn on alternate binary LEDs from left to right

Turn on binary LEDs one at a time from left to right
Turn on binary LEDs one at a time in both directions (1). . .
Turn on binary LEDs one at a time in both directions (2). . .
Turn on binary LEDs in both directions at once,

startingatthecenter.,
Turn on binary LEDs in both directions at once,

startingattheoutside

Transfer contents of addresses 50-57 to 58-6F

Count frequency of numbers less than 6 stored

INMEMONY . .. o e it 106 No. 85 Guessinggame: largeorsmall? 147

No. 61 Accumulate and display total contents of 50-6D 107 No. 86 Guess-the-numbergame. 148

No. 62 Display the average of numbers held in memory 108~109 No.87 Reflextester, 149~150

No. 63 Hex addition: 2 digits + 2 digits 110~111 No. 88 “Blackjack“ cardgame - 151~152

No. 64 Hex subtraction: 2 digits — 2 digits 112~113 No. 89 “Make-a-Match” game 153

No. 65 Hex multiplication: 2 digits x 1 digit 114~115 No. 90 Guess-a-random-numbergame. 154

No. 66 Hex division: 2 digits + 1digit 116~117 No. 91 Guess-the-number-in-b0game 155~156

No. 92 Sharpshootergame i ... 157~158

GROUP4COMMANDS, .118 No. 93 Speed countinginhex......................... 159~160

No.67 Useof CALSUND o n.. 118 No.94 Gunfightgame............ 161~162

No.68 Use of CALERRS oo, 119 No.95 “Slot machine”game 163~164

No.69 Useof CALLONS 120 No.96 Memorytestert 165~166

No.70 Use of CALSIFT, 121 No. 97 Store random numbers (0-9) inmemory 167~168

No.71 Use of CALDEM+and CALENDS. 122~123 No. 98 Guessingmusical notesc.. ..., 169~170

No.72 Useof CALDEM —. it e e e 124~125 No. 99 Store random numbers for musical notes in memory 171~172

No.73 Useof CALCHNG 126~127 No. 100 “Rat Bashing”game 173~174

No. 74 Sort contents of 50-56E in ascendingorder. 128~129

No. 75 Decimal multiplication: 2 digits x 1 digit 130~131 APPENDIX ,- 175

No. 76 Decimal division using DEM -: 2 digit ~ 1 digit 132~133 '

No. 77 Add together decimal values inmemory 134~135 CREATE YOUR OWN PROGRAMS. 176~177

No. 78 Calculate decimal averagesinmemory 136~137

No. 79 Transmit Morse code fronj data stored in memory 138~139

No. 80 Countdown timer {max.7 mins.59secs.). 140~141

No. 81 Turn on binary LEDs with accompanying musical notes . 142~143

No. 82 Morse code inputcontroller 144 !

No.83 Metronome oo i it i it e e e e e 145

No. 84 Guessing game: odd/even numbers. 146

INTRODUCTION

On the kitchen table, next to a stack of bills and a pot of
coffee, sits a computer. A colorful pie chart divided into
uneven sections of the household budget, covers the screen.
The printer, alongside the computer, whirs away as your
mother awaits the printout.

In the den, down the hall, your father is busily sending a
memo via telephone on his portable briefcase-size computer.

And you are standing in the doorway of your bedroom, carry-
ing your Microcomputer Trainer Kit, and trying to decide
where would be the best spot for it. Appropriately you set it
on your desk next to a stack of Buck Rogers comic books
and a pile of video arcade machine tokens.

Yours is the typical Computer Age household. People all
over the world are using home computers to 1) aid them in
business matters, 2) organize the home, and 3) provide an
enjoyable diversion. And everyone in the family can get
involved.

So now it’s your turn. You have your Microcomputer Kit and
you're ready to tell it to do something. (Remember a com-
puter doesn’t think; it only does what you program it to do.)

But first let’s get to know your Computer.

;5*

Features and Controls

Audio speaker
output

Binary LED
output

Central processing
unit Hex LED

output
Amplifier circuit

Subroutines

Clock timing

Command code circuit

Hexadecimal input
keyboard

1) BINARY LEDs

These seven Light Emitting Diodes (LEDs) light up in different
combinations to correspond to the binary numbering system.
The binary numbering system uses only two digits, 1 and O.
Computers carry out all operations in binary.

2) HEX. LED

This LED displays the characters 0-9 and A-F. “Hex" is short
for hexadecimal, a numbering system based on 16 digits (O, 1,
2,3,4,5,6,7,8,9,A,B,C,D,E,and F}.

3) 09, A-F Keys
These keys let you enter hex numbers into the computer.

4) ADDRESS (ADRS) SET Key

The memory of the microcomputer is divided into “addresses.”
Each address holds one character of data or information.
When you press two number/letter keys and then ADRS SET,
the binary LEDs corresponding to those two numbers will
light. The HEX. LED will show the contents of that address.

5) INCREMENT (INCR) Key
This key loads data into the memory address and tells the
computer to display the contents of the next address. !

6) RUN Key
This key executes a program.

7) RESET Key
To reset and display the contents of address 00 on the HEX.
LED, press this key.

The Microprocessor

The heart of this Microcomputer Trainer Kit is its micro-
processor or Central Processing Unit, a tiny package located
in the center of the kit. It measures about one inch by nearly
half an inch and is made up of tens of thousands of transistors.
Think of the microprocessor as the control center or “brains”’
of your computer.

‘Most computers, including your trainer kit, are made up of a
microprocessor, some input and output circuits, and some
menfory.

MEMORY

INPUT MICROPROCESSOR OUTPUT

Figure 1

The memory sections of your computer consists of two parts
—the RAM and the ROM. RAM (for random access memory)
is the memory area where you may “‘write”’ and ‘‘read’’
information. The information can be anything from numbers
and words to programs and instructions. RAM memory is
lost whenever you turn power off. For this reason RAM is
also called “volatile” memory, meaning not-permanent.

ROM memory (or read only memory), on the other hand, is
permanently written into the computer. There is no possible
way to alter this information. Your Microcomputer Trainer
Kit contains various game programs and monitoring programs

7

(that help you to read, write, and excute other programs).
The information in the ROM is written in at the time of manu-
facture. Nothing you do (short of melting down your com-
puter) can erase information from the ROM area.

Inside your microprocessor are a variety of subsections and
registers. (A register is a temporary memory.) All around it
are inputs. Information comes in through these inputs and
is stored or processed in the subsections, Sometimes informa-
tion is output. Figure 2 shows your micro chip in detail.
Each input and subsection is explained below.

®) ®
R3 R2 R1 RO RF RE RD RC VCC 0SC?2 0SC? 000102
] 1 1 1 1 1 1 | 1 1 [| 1 1
@
® @]
@
©
®

T 1 T T LISLEL T 1 T 1T T 1
R4 Rb R6 GND K1 K2 K4 K8INIT 07 06050403

© ® © ® ®

Figure 2

1) Program counter —a circuit that keeps track of the execu-
tion of steps in a program.

2) K input (4-bit) —a circuit that reads the key input

3) 2,048 word ROM (8 bit/word) — the read-only memory
where permanent data (2,048 characters or group of
characters) is stored

4) Command decoder — a circuit that determines the meaning
of a set of signals and carries out the command

5) O outputs (8 bit) —circuits that control some key inputs
and the lighting of the HEX. LEDs

6) R outputs (11 bit) —circuits that control some key inputs,
the lighting of the binary LEDs, and the speaker signal

7) 128 word RAM (4 bit/word) — the read/write memory in
which data can be erased or changed

8) X register —a temporary memory
9) Y register —a temporary memory

10) Accumulator register —a holding memory from which data
is fetched and stored, i.e. part of an arithmetic operation
and the end result of the operation can be stored here.

11) GND input—connects to ground

12) INIT input—a circuit that controls the starting of a
program

13) Vcc —acircuit that connects to the battery terminal

Once you have your kit wired, you can see more clearly how
the inputs link the various sections of your computer with
the chip.

WIRING

Install 6 AA batteries into the battery compartment on the
back of your kit. Observe correct polarity as shnown in figure 3,
To avoid running down the batteries, always remove them
when you are not using your Kit,

If the display becomes erratic or weak, replace all the batteries.

Figure 3
Your kit comes supplied with enough wires of different
lengths to make all connections. Use the shorter wires to
reach terminals that are closer together and the longer wires
for more distant connections.

To make connections, bend the spring terminals and slide the
exposed wire tip (or lead) inside the spring with long-nose
pliers as shown in figure 4. Double-check all connections. ,

LONG-NOSE PLIERS

/WlRE \SP R{
1 2 3 4.

TERMINALS
5

Figure 4

Binary LEDs Lighting Check

Connect one end of & wire to the negative terminal of the
battery (54) and the other end to the ground terminal of the
LEDs (2) as shown in figure 5. Attach a lead to the positive
battery terminal {(53) and with the other iead end touch each
of the binary LED terminals—{10), (9), (8), (7}, (6), {5), and
(4). The LEDs should light in turn.

{

USPEAKER

on mT zzT zaT 24T st st 27T Z_BI st :wT 311 32] 33[77

R3 R2 R Ro Re Re Ro Re vee OSCr OsCr O o 0z

0.1pF MICROPROCESSOR

AMPLIFIER }/

11]a1]1]
_ BATTERY

1000

R4 R Re GND K1 Kz Ka K8 INIT 07

SRR EEEEE R

C o o . Miss Fso/ 7 so|s1 I 62
AR RN

Figure 5

o

HEX. LED Lighting Check

Leave the negative battery terminal (54) connected to the
ground terminal of the LEDs (2). Connect another lead to the
positive battery terminal (53) and touch the other end of the

lead to each of the HEX. LED terminals—(18), (17),
(15), (14),

(16},
(13), and (12). (See figure 6.) Each time you touch

a terminal a different segment of the HEX. LED should light.

|

T

|
i \'12 1131 14 ,15 ,1s 117

/‘4"& o -

T e

AMPLIFIER
51 52
- T
(63)
‘ Vv
| ol
. BATTERY

I
N

JJJJJAiJJJqu

R3 Rz R Ro Rr Re Ro Re

vee 0SCz 0SCt 0o o 02

MICROPROCESSOR

Ka K INIT 07 O6 05 Oa 03

4 13 1 2 ®
35L 37L 38| 9] 40| @ nzl 431 “l nsl wl nl lBL 43
50
2] ¢ 3 o} |
_ — . —

[}
z
<]
x
=

Figure 6

CPU Check

Binary LEDs

Now we'll check the functions of the central processing unit
with the binary LEDs and the keyboard. Make these connec-
tions — see figure 7:

(63)—(28) (1)-(39) (30)—(34) (29)—(35)
(19)—(50) (45)—(63) (11)—(44) (42)—(57)
(10)—(23) (9)—(22) (8)—(21) (7)—(20)
(6)—(36) (5)—(37) (4)—(38) (40)—(55)
(2)—(54)

U SPEAKER

0.1pF

22 i 24 25
Rz R Ro Rf
MICROPROCESSOR
Re Rs R} GND K1

AMPLIFIER

]| T

BATTERY

When you have completed these connections, press the RESET
key—all the LEDs will turn off. Then press INCR; each time
you press INCR a different combination of binary LEDs
light as shown below.

eo0o000 :
e0000: 0
00000 ::
o000 : 00
Y Y Y BT 3

ok wN =

127.

e
e

This binary sequence is the computers method of counting.
(More on the binary system later.)

HEX. LEDs

Now check the CPU functions controlling the HEX. LED and
the keyboard. See flgure 8 and-make the following additional
connections. (Dotted lines show existing connections.)

(18)—(33) (17)—-(32) (16)—(31) (15)—(49)
(14)—-(48) (13)—(47) (12)—(46) (27)—(59)
(26)—(60) (25)—(61) (24)—(62) (43)—(58)
(41)—(56)

U SPEAKER

0pF

AMPLIFIER

e
D]

{ BATTERY

Figure 8

_11 —

Press the O-F keys and check that the appropriate HEX, LED
segments light:

F] Ti ﬂu Re Mi
e[0] Yol & 8ol ol ¥

7

) 1§J (3

Ej\ .

Y99 & 7

B (T'I) I]o Re@ Ml@ Fa@ d@ @@

@5

5 G A ib\ E Fl

Speaker Amp

Finally, connect the CPU to the speaker amp with these addi-
tional connections — see figure 9:

(61)—(53)

(3)—(20)

Repeat the key operations for Binary LED CPU check and
HEX. LED CPU check (INCR and O-F keys). You should hear
a beep every time you press a key.

Once these connections are made, there is no need to make
changes for any of the programs. You may want to disconnect
the wire connected to terminal 54 when you're not using your
kit. This wire functions as the on/off switch.

SPEAKER

0.9pF

e AMPLIFIER

24K 24k 24K 24K 24K 24K 2.4K
t e ld e s b e i
v fu [fu [6/ %/ "/ "8
1
£
34 385

R3 R2 Lil Ro Fr Re Ro Rc

MICROPROCESSO!

Ra Rs. Re) GNO Ki K2 Ke Ke I
38| 7 38 38 40 a 42 Q “

vee [}OsC2 § 0sCt | Oo o 0z

30/ 31 32 33

A00kHz

56K
tooeF

330pF

| J S . N .

(3 j) 5 3 o 62 53 \

‘ w 55| se] 57| 58| wMi Fa Sol

=T @1 ® & of=

___ ._BATTERY | | | | ‘
Figure 9

LET'S COUNT IN COMPUTER!

The Binary System

People think and talk with words— machines think and talk
with numbers. Using numbers involves counting and to most
of us counting means decimal counting—0, 1, 2,3,4,5,6,7,
8, 9.

Decimal counting is a system based on 10 digits; that is why
we refer to it as a base ten numbering system. But this is only
one among a variety of counting systems.

Computers count best in binary because there are only two
digits (bits) to remember — 0, and 1; this is a base two num-
bering system. This system adapts well to computers because
the two digits— 1 and O—can represent positive and neutral
voltage respectively to the computer. Think of it as a switch —
when the switch is on {1 position) a positive voltage is present;
when it's off (O position) there's no voltage — it's neutral. By
combining a series of 1s and Os, a computer can represent
any number and perform a variety of operations on them.

In decimal, and in binary, the position of each digit gives it
a particular value. That value depends on the base of the
numbering system. In base ten, the columns from right to left
correspond to 1, 10, 100, 1000..... The number 179 consists

of:
’

hundreds 1 x 102
tens 7 x 10?
ones 9 x 10°

The value of each position increases as the base number (10)
is increased:

.08 104 103 102 10! 10°
This process is the same for any other numbering system; the
only thing that changes is the base nimber. In binary, we have

a two base numbering system. So the value of each position
is increased by increasing the base number 2:

VA 24 23 22 2! 20

While the digit values in decimal ook like this:

100,000 10,000 1,000 100 10 1
thos'e in binary look like this:
32 16 8 4 2 1

Binary to Decimal Conversion

With the information given in the previous section, it is rela-
tively easy 1o convert numbers from binary into decimal.
Consider the following binary number:

1101

There are two steps for converting 1101 to its decimal equiva-
lent. First, multiply each of the binary digits by its column
value:

1x2%=1 0x2'=0 1x22=4 1x23=8

Next, add together all the products. The number you get by
adding 8, 4, 0, and 1 is 13— the equivalent of binary 1101,
1101 in binary = 13 in decimal.

fn binary counting, we can never count more than 1 without
carrying over to the next column. For example, the binary
number corresponding to decimal 2 is a one in the twos
column and a O in the units column. (See the following chart.)
Decimal 5isa 1 in the fours column and a 1 in the units.

Use this chart to help you convert binary into decimal.

BINARY LED BINARY No. DECIMAL No.
0000000 V000000 0
000000::| 0000001 1
00000::0| V000010 2
00000::::| 0000011 3
0000::00| 0000100 4
0000::0::| 0000101)
0000::::0| 0000110 6
0000 0000111 7
000::000| 0001000 8
000::00::{ 0001001 9
000::0::0| 0001010 10
000::0::x | 0001011 11
000::::00| 0001100 12
000::::0:: | 0001101 13
000:::::®{ 0001110 14
00® i | 0001111 15
00::0000 | 0010000 16
00000 0010001 17

1 1
(64s) (329)

1 1

(16s) (8s)

All 7 LEDs light for this binary number, which corresponds
to decimal 127. (64+32+16+8+4+2+1=127)

In binary you may see a 7-character number like this:

1 1
(4s) (2s)

Adding Binary Numbers

Now that you've learned a new way to count, it's time to
learn the new math that goes with it. Binary addition is really
simpler than it sounds. Just remember these rules:

1. 0+0=0
2. 0+1=1
3. 1+0=1
4. 1+1=0, carry 1=10
b, 1+1+1=10+1=11
Try working these sample problems:
A. B. C.
1001 101 10010
£100 411 401
? ? ?
Answers: A 1101 B. 1000 C. 100001

Subtracting In Binary

Most computers like the simple way out. They like two-digit
number systems instead of nine-digit. And they prefer learning
one arithmetic method to two, or three, or four. So when
you tell most computers to subtract binary numbers, they
subtract — by adding. Sound complicated? [t's not!

The method used in “subtracting’’ is called Two's Complement
Notation. The binary numberto be subtracted is complement-
ed or inverted by changing all the 1s to Os and all the Os to 1s.
Then the two numbers are added. Add a 1 to the result and
ignore any carry over and you have your answer!

For example: 14 1110 110
-9 = -1001_= *0110

5 10100

1

101

= 5 (Remember that the
carried 1 is ignored.)
That's not so bad, is it?

Now you try working a few:

A, B. C.
1100 1111 1000
1010 —1011 -0111_
? ? ?
Answers: A. 0010, B. 0100, C. 0001

The Hexadecimal System

Decimal to Hex Conversion

The second counting system your computer uses is hexa-
decimal. The “hex" system counts to a base 16. The first 10
numbers in this system look very much like the decimal
system, but the next 6 are represented by letters—A, B, C,
D, E, F. (See the chart below.)

Hexadecimal numbers are two digit combinations of numbers
and/or letters. The hex system can be conveniently used as a
shortened version of binary.

We can count up to 15(F) in hexadecimal before carrying
over. Hex numbers/letters and their ,corresponding decimal
numbers are listed in the chart below.

DECIMAL 'BINARY HEXADECIMAL
0 0000 00
1 0001 01
2 0010 02
3 0011 03
4 0100 04
5 0101 05
© 0110 06
7 0111 07
8 1000 08
9 1001 09
10 1010 OA
11 1011 0B
12 1100 0C
13 1101 0D
14 1110 OE
15 1111 OF
16 10000 10
Figure 10

To convert a decimal number into hex, first convert it into
binary. Do this by dividing by 2, writing down the remainder,
dividing that quotient by 2, write down the remainder, and so
on until the final quotient is 1 or 0. Then reverse the order
of the remainders and voila! your binary number.

For example: 39 decimal = ? binary
quotient remainder

39+2= 19 1
19+2= 9 1
9+2-= 4 1
4+2= 2 0
2+2= 1 0

1

final remainder).

(This 1 is the. final quotient
which also becomes the

The remainders in reverse order = 100111, which is 39 in
binary. (You can check this by reversing the process — binary
to decimal — which you have already learned.)

Now let's take our binary number and divide it into 4-bit
sections: 0010 0111 (you can always add Os to the begin-
ning of the number to make it 4 bits.)

Your new number is easy to convert into hex. Just use the
chart in figure 10. 0010 or 2=02 in hex and 0111 or 7=07 in
hex. Drop the Os and you have the hex number 27 (two seven
not twenty-seven).

Check this by converting your new hex number {27) back to
decimal. This is very easy to do. Just multiply the first number
(2) by 16 and add the second number (7) to the total.

16x2=32 32+ 7=239
It works!

Consider these numbers: 17, 60, 127.

17 =10001 in binary = 0001 0001 = 11 in hex.
60=111100in binary = 0011 1100 = 3C in hex.
127=1111111In binary = 0111 1111 =7F in hex.

Practice converting decimal numbers into binary and hex.
Before you know it, you'll have the hang of it!

Hexadecimal Arithmetic

Hex numbers can be added, subtracted, multiplied, and divid-
ed. The easiest way to perform this math is to convert the hex
numbers to decimal, do the arithmetic, and then convert your
answer back to hex. We've already learned the conversion
processes, but it won’t hurt to go over them. Let's try a few
hex problems:

1. 1A+13=? 1A=(16x1)+A{or10)=16+10=26
13=(16x1)+3=16+3=19
26+ 19 = 45 3.

Convert 45 into binary by dividing by 2.

guotient remainder
45 + 2= 22 1
22+ 2= 11 0
1M+2= b 1
5+ 2= 2 1
2+ 2= 1 0
1

{final quotient)
The binary number is 101101 or:

divided into 4-bits: 0010 1101
and converted to hex: 2 D
So, TA+13=2D 4.

36=(16x3)+6=48+6=54
14={(16x1)+4=16+4=20

2. 36—-14=7

b4 —20=34
Now convert 34 to binary by dividing by 2.
guotient remainder
34+2= 17 0
17+2= 8 1
8+2= - 4 0
4+2= 2 0
2+2= 1 0
1

i :
Your binary number is 100010 or: (final quotient)

divided into 4-bits: 0010 0010
and converted to hex: 2 2

;16,

So,36—14=22

12x6=" 12=(16x 1}+2=16+2=18
6 = 06
18 x 6 =108
quotient remainder
108 +2 = b4 0
b4 +2= 27 0
27+ 2= 13 1
13+2= 6 1
6+2= 3 0
3+2= 1 1
1
1101100= 0110 1100 =6C {final quotient)
S0, 12x6=6C
22 +3=7 22=(16x2)+2=32+2=234
3=03
34 =+ 3 =11 remainder 1
11 =B in hex

S0, 22 + 3 =B remainder 1

% MICRO GAMES

Seven Games to play now follow:

No.1 Electronic Organ

No.2 Automatic Tune-playing
No.3 Musical Guessing Game
No.4 Rat Catching

No.b Tennis Game

No.6 Timer

m
No.7 Morse Code / \

Play these games to get some practice with the keyboard.

These game programs are stored permanently in the Micro-
computer Trainer ROM memory; they cannot be “lost”
when the batteries are taken out.

Later you will be learning how to load programs into the
micro and how to run them; later still you will be learning
how to write programs yourself.

Gradualty you will become very familiar with ideas which
may seem difficult at the moment. Don’t worry ! Keep trying
and at the end, if you stick at it, you will be a computer
expert.

‘17_

No.1 Electronic Organ

Let's begin with a program that converts the micro into a
musical keyboard. Each key 1-9 and A-E plays a different
note.

Press RESET, 9, RUN in that order.

That will start the Electronic Organ program. Now play the
scale below by pressing the keys shown:

]

| VEE
N

] 1

b
S 4

&
50] Lol ol Yol %9 4o Yo dol o) Mdl

2
L * The sound stops as soon as the
T

T
TN
r-—d-—o-‘.

key is released.

R WD) RS N
o Yol &o) ¥

Learn the musical notes and then try to play a tune with
which you are familiar.

(The following are the Sol-Fa names for each note:)
Key 1 La 6 Fa B Re
2 Ti 7 Sol C Mi
3 Do 8 La D Fa
4 Re 9 Ti E Sol
5 Mi A Do O,F No Sound
_)

No.2 Automatic Tunes

SWANEE RIVER

.
-]

[1

A4] X 1 t f —]
Y A 3 NN 131 [\ Y ;! 1 1 r H 1 § I 1 1 —
A\Y A 2 o 17 1A N 1§ |8 1 1 1 1) -4 o 1 H 3

J e v 4 v o4 1 ! i i

Mi Re Do Mi Re Do Do La Do S0l Mi Do Re

0 N .

A= i Iy | — t r ;"l r 1) —— + o |
l fARY b v Y 1'% 1Y 1Y T 1 I 1 o 13 1Y 1 1 1 38 |
S = 1T N—dl 17 1 1 1 1 T e | X I b T ’

v " Y4 ¢ < 1 ! 4 7’ -

Mi Re Do Mi Re Do Do La Do Sol Mi Do Re Re Do

A KEYING IN THE TUNE

Press RESET. Now press the note key indicated followed by
the INCR key. Key in the entire song—from address 00 to 08.
If you make a mistake or have to start over, press RESET
before beginning.

When you press the note key, the letter or number of that key
is displayed. When you press INCR or RESET, any character
might be displayed (it doesn’t matter which one), so a ques-
tion mark appears in the program next to INCR and RESET.

ADDRESS/KEY binary LEDs HEX. LED
s T ?l
00 fg) displays —————— 000000 [
@ e 60 00eeen |7
o1 M : eo0co00e: -

02

03

04

05

06

o7

08

FF

YD

AraceE

Trars
[y

displays

"

You have entered the notes 4) B

This is the meaning of each character:

¥

B CHECKING THE DATA

[t is essential that you always check what has been keyed in,
otherwise you may have some surprises! Press the keys shown
in the next list and check that at each step. the HEX. LED

address binary LEDs data
00 0000000 G- Tempo (speed)
01 000000 | 5 Noe |-
02 000000 7 e Length } -
03 00000 :: 4 e Note | —
04 0000 00 R Length }’i‘
05 0000::0:; 3 Note —
06 00000 R Length })
07 (I I 1 ToZole Foeee- End of tune
b8 000 000 O - Repeat

Notice the lighting of the binary LEDs when you enter a key.

Can you tell what it all means from what you‘ve learned about

the binary system? When you press the key entry for address

01, the binary LED for this address lights (eeeeeeo).
0000001

When you follow this entry with the INCR key, the binary
LEDs for the next address {02) light (eeeeece)
0000010.

And so on ... This is a convenient way to check where you are
in the program just in case you lose your place. For example,
if a 3 shows on the HEX. LED and the binary LEDs show
000000 (0000101), then you will be entering 3 into address
05 as soon as you press INCREMENT. The lighting of the
binary LEDs tells you which address you are about to enter
information into.

The last number/letter pressed before INCREMENT will be
the number entered. You can correct a wrong entry by press-
ing the right key before you press INCREMENT. If you have
already pressed INCREMENT, you will have to correct your
mistake by another method described under “ERROR COR-
RECTION.”

shows the same character as the list.

binary LEDs HEX. LED
displays - eecocoe [
’ eeo0o00e:
X =
e " 0000 30 |
’ 0000 Y
& : XXX XXy
&= , eee0e0 0 I
: 7
T " 000 i @ L]
: eee0e0 = F

again,

00 000
Each time the INCR key is pressed, the next address number is

displayed in BINARY on the binary LEDs and the contents
of that address are displayed on the HEX, LED.

* |f any data is wrong, press RESET and key in the sequence

C STARTING AUTOMATIC PLAY 19 00 00 4~ Note
When you have checked that the data is correct start the 1A : F - - tenath } .
ﬁg(;gr]r?met;y p;essing RESET, A, RUN in that order. You will = 5~ — - Note |
near T tof;?ogsi:i/p(;ajrtse:lf?ver and over again. Can you work 1C 7 ———length |~ JoMi
Now the whole tune may be keyed in by following the chart o 4= Note | » R
below. Press the data number followed by INCREMENT s 1= ctengn 0)
Notice which characters are notes and which are lengths. . " 37 7 ~Nowe [—
address binary LEDs data gO .:f::..... 177 Ttenam 3 o
1 ®:0000: 5———Note | .
00 0000000 6 — — —Tempo 22 ®:000:0 1 —— —Length) >
01 000000 5- - —Note | . . 23 0000 4 — — —Note I :
02 00000 O 7 — — —Length |- } Mi 24 0:00:00 1 — — —Length f f Re
03 00000 4~ =Note |- 25 ¢ :00:0: 3— — —Note o
04 (YYY Y ¥ 1 -~ —length [Re 26 :00::® 3 -~ —Length } 4 Do
05 0000: 0 3---Note |- = 27 CYX Y T A — — —Note e
06 0000 ::® 71—~ —Length | =) Do 28 -0 000 3 — — ~Length J%— 0o
07 0000 : 5— — —Note . 29 0:0:00: g — — ~Note B
08 000 000 1 — — —Length } S 2A :0:0:0 1 — — —Length } e
09 000: 00 4 - — —Note S 2B 0@ = A~ ——Note | o
OA 000:0: 0 4 — — —Length } — - Re 2C 0000 5 — — —Length e Do
0B 000 @®:: 3- - Note | 2b @ 53’“ 7 — — —Note =
0C | eee::@@® | z-—-tengn | 4 ° 2E | @ ® | 3-——tengn I=*
0D 000 0 A~ — —Note - 2F ®: S 5 — — —Note |
OE 000 :: @ 3~ ~ —Length }i — Do 30 ®::0000 4~ =—length | s
OF Y'Y 8- — —Note o 31 ®: “ 3~ ~ ~Note | |
10 00: 0000 1 - — —Length } *72:: La 32 ®: =@ 4 - = —Length | 'b Do
11 00:: 000 :: A— — —Note B 33 ®: S 4 — — —Note l
12 00:00:: @ 5— — —Length } = f=Do 34 0000 3-——Length | J e
13 0000 :: 7 — — —Note 35 @ @ 4 — — —Note |
14 | e®:@:@® | 7 Lengh } S 5o 36 | e« @ | aoc—tengn | 4 ©
15 00 0: 0 5— — —Note 7 37 ®:: \ o 3 - — —Note 1 ,
16 00:0: @ 3— — —Length } S =M 38 ®:: £ ——Llength | = 2
17 0O @ i 3—— —Note |- 5 39 ®: F— — —End of tune
18 00’ 000 3— — —Length } ;%j’fDo O- 3A Q@@ O — — —Repeat play

D ERROR CORRECTION

If you have made an error near the beginning of the program,
it is easiest to just press RESET and start over. But if you
have already keyed in much of the program and you enter
the wrong number into an address, you can correct just the
address where the mistake is. For example, if you have entered
a 5 in address 23, but it should be a 4, use the following
progedure to put in the correct number:

&=y should display @

2@ " l hex number of address

where incorrect figure is

b y @J stored

Re

° @ | correct figure 4 written
- [into address 23

2/

NCRE
Sent) ”

You can make this correction while you are keying in the
program (and then continue entering the rest of the program
data) or you can correct your mistake after you have keyed
in the entire program.

If you accidentally press INCR twice after entering a value,
you will have entered the same value in-two succeeding ad-
dresses. For example you may enter 5 into address 01 and 02
when you only wanted it in 01, So just skip address 02, return
to it at the end of the program, and use the error correction
method above to put the correct value (the one you skipped)
into 02 (which will automatically erase the incorrect value—5).

You cannot delete any extra addresses you might accidentally
enter, so be extra careful, especially in long programs!

E STOPPING & RESTARTING THE TUNE

To stop the tune, press RESET and hold it down until the
music stops. To restart, press A, RUN as before.

F CHANGING THE SPEED

The tune may be played faster or slower by changing address
00. To make it slower, replace 6 in address 00 with 7, 8,9, A,
B, C, D, E or F (F is slowest). To make it faster, replace 6
with 5, 4, 3, 2, 1 or 0 (0 is fastest).

Try changing address 00 to 3 by pressing RESET, 3, INCR.
When you run the program now it will sound faster.

Try putting other numbers into address 00 to get a whole
range of different speeds.

G STOPPING AFTER ONE PERFORMANCE

To do this change the last character of the tune to F. This is

at address 3A; at first you put O there but now change it as
follows:

displays eeoo0ooe)
o =
; : ccccecee
h . eooccee [

= , #o##%oo@

J5) displays sOUNLOe @
= : vevvues |7

Then start the program by pressing RESET, A, RUN. The tune
will play once only this time.

e)
Note Codes

TEMPO — codes O-F {fast) O (- Y F {slow)

A REST — code O

LENGTH OF NOTES/RESTS — see codes in next table

END OF TUNE — F followed by O to repeat

END OF TUNE — F followed by F for a single play

H LENGTHS OF NOTES AND RESTS

In the following table, the second column shows the length
of the note and the third column shows the code to use to

control the length:

¥

note/rest length in 1/16 code N
1/16note ::::1 O
’1/16 rest
1/8 note —-z=2 1
 1/8 rest
dotted 1/8 note -—-—--3 2
1/4 note -—-=4 3
1/4 rest B
dotted 1/4 note -———6 5
1/2 note o __
- = 7
1/2 rest - 8
dotted 1/2 note(J-) - =12 B
whole note {O) ____ 16 F
whole rest (W) -7
J

| WRITING IN YOUR OWN TUNE

You should now be able to code a tune of your own for this
program. REMEMBER THESE RULES:

1) The tune must not go further than address bF.
2) The tempo mark goes in address 00.

3) Codes for notes and rests go in addresses with odd num-
bers.

4) Codes for the length of the previous note or rest go in
addresses with even numbers,

B) End the tune with FO (repeat) or FF {stop after one play).
You must leave 2 addresses free at the end for these codes.

On the next pages are more tunes. This is followed by a list
of all the codes to be keyed in to make them play. Before you
look at the list of codes, write down on a separate piece of
paper what you think the codes should be, just by looking at
the tune.

it will be very good practice for you.

SILENT NIGHT

() 1 Y 1. 1 I 1 l
p AR 4 1 N7 1 H I N T 1 o o 1 T 11)]
V A% T T 7 1 H T 1T T T 1) T . T
Xy a4 o 4 T H o & 5 1 1) I A 1
T & e _— }' A
Sol La Sol Mi SolLa SolMi ReRe Ti Do Do Sol
) i [| [! L} A | PR G
V4 T T 1T T) N T Il H T T PN T 1 N1 1
@_t F' ‘ T F‘ o 7 1 1 T T T
M 2 r 4 1 i . 4 1
o f : ——+ i : &
0 Lala Do Ti LZ? SolLaSolMi Lala Do TiLa Sol La Sol Mi
yL {
N TR ye |
o LA |)| i i |
1 1 1 1l |
rw) L t : I - L A"
Re Re FaRe Ti Do Mi DoSolMiSoiFaRe Do

Data for this tune

address binary LEDs data
RESET

00 0000000 A - — —Tempo
01 000000 :: 7 — — —Note J <ol
02 00000:0 5— — —Length)
03 00000 :::: 8 — — —Note } M La
04 9000 00 1 — — —Length
0b 00009::0:: 7 — — —Note } J s
06 0000 :: 3 — — —Length
07 0000 5 — — —Note } J o
08 000 000 B — — —Length "
09 000 00:: 7 — — —Note } J Sol
OA 000:0::0 5 — — —Length
0B 000: 0 8~ — —Note } I
ocC 1 — — —Length
oD L 1 1 Refad Lw 7 — — —Note } J ol
OE 000 i@ 3 — — —Length
OF QOO 5 — — —Note } A
10 00: 0000 B — - —Length 4 oM

-24-

N = —= 2 > > > 3 3 .8 8 N N 8N
OMMOODTVI>»OWNDWN =

20D

B — — —Note
/ — — —Length
8 — — —Note
33— — —Length
g ~ — —Note
B - — -Length
A - — —Note
7/ — — —Length
A — — —Note
3 — — -Length
7 — — —Note
8- — —Length
8 — — —Note
7/ — — —Length
8 — — —Note
3 — — —Length
A — — —Note
5 — — —Llength
9 - — —Note
1 — — —Length
8 — — —Note
3 - — —lLength
7 — — —Note
5 — — —Length
8 — — —Note
1 — — ~Length
7 — — —Note
3 — — —Length
H— — —Note
B8 - — —Length
8 — — —Note
/ — — —Length

N e

‘L+— > Th

L W W W

Do

Do

S0l

La

Do

- T

La

Sol

La

Sol

e S ———————— |

address binary LEDs data
51 7— — —Note Ty
31 0! 000 :: 8 — — —Note }7} g 50 1- - ~Length f - Sol
32 [Reey ¥ XY 3 — — —Length — 53 5- — —Note
33 Q@@ i A — — —Note } CF Do 54 3— — —Length } j Mi
34 : 5 — — —Length ZF* 55 7—— —Note -
35 9 — — —Note },3} . 56 5— — —Length } ————— i - 50!
36 1 — — —Length 57 6~ — —~Note
37 8 - — ~Note }ji ~ | a o8 17— — —Length > Fa
38 3-——tength) 59 4-— —Note
3,9 7/ — — —Note] 1 sol 5A 3=~ ~Length } B Re
3A 5 — — —Length | - 5R 3- — -~ Note
38 8 — — —Note }';’};_'La 5C B~ — —Length } 4 bo
3C 1 — - —Length |~ 50 F- — -End of tune
3D 7 — — —Note *:éf:Sol 1=] LeBeiated) O- — -Repeat play
3E @ 3 — — —Length T
3F @ i S 0 ek 5 — — —Note —
40 " 000000 B — — —Length ‘i M
A1 el] — — —Note .
40 ::::.. ?_ ~ Length - r Re * Addresses bD & bE above show the codes needed to repeat
43 X 1 1 1 Eeie 8 — — —Note E{: o the tune.
44 000 00 3 —— —tength - Did you get it right? Now key in all the data exactly as you
45 o 1 1 Ref Ro D — — —Note r 5 did for the first tune.
46 QO@® @ 5 — — —Length T
47 Y O@@ s 3 — — —Note 5 Fe
4 8 90 009 1 —— —Length :
49 oY T By ¥ B 9 — — —Note o4
4 A Y 1 I BF) 3 — — —Length o
48 Q@@ A —— —Note
A4C OO Q@ B— — —Length
40D Q@ @ik C— — —Note
4 & el 1 Releied) B—- — —Length
4 L@@ Lk A—— —Note
50 1 9: 0000 5— — —Length

YANKEE DOODLE

0

T r 1 } T
1] el] 1 r 4
])| . L 1 | |
N\ VA 3 | 1 | 1 1 1] [et 1 3 I 1 1 1 1 Iy
J T | L R S 1
Do Do Re Mi Do Mi Re Sol Do Do Re Mi Do Ti
s T i } T
\Rv .4 1 1 { % } ; { } 1 T 1 1 % T I i |
I B B A T f 1
Do Do Re Mi Fa Mi Re Do Ti Sof La Ti Do Do
Data for this tune
‘ address binary LEDs data
| RESET
i 00 09000000 3~ — —Tempo
i 1 000000 :: - — —Note R
‘; O A - ,,'}F;,f,, DO

02 00909 ©®
03 00000
04 000000
05 00000
06 0000 ::

07
08
09
i OA
; 0B
ocC
0D
OE
OF
10

3—- — —Length
A~ — —Note
3~ —~ —Length
B~ — —Note
3-— —Length
C— — —Note
3~ —~—Length
A~ — —Note
3~ - —Length
- — —Note
3— — —Length
B- — —Note
3- — —Length
7— — —Note
3— — —Length

0o

11

12
13
14
15
16
17
18
19
1A
1B
1C
10
TE
1F
20
21

22
23
24
25
26
27
28
29
2A
28
2C
20
2E
2F
30

0:000: @
pes ... P T3

IR v S o e By

A~ — —Note
3— — -Length
A— — —Note
3— — ~Length
B— — —Note
33— — —Length
C-— - —-Note
3— — —Length
A— — —Note
7/ — — —Length
99— — —Note
7 — ——Length
A— — —Note
3— — —Length
A— — —Note
3— — —Length
B~ — —Note
3— — —Length
C— — —Note
3— — —Length
D— — —Note
3— — —Length
C— — —Note
3— — —Length
B— — —Note
3— — —Length
A— — —Note
3— — —Length
©— — —Note
3— — —Length
7 — — —Note
3— ~ —Length

Do
T
= Do
Do

Re

~Fe

" Do

Ti

" Sol

address binary LEDs data
31 0 00®:: 8-~ — —Note } ;'L
32 @ i 3 -~ —Length
33 ®: O— — —Note
34 @ 33— — —Length }
35 ®: A~ — —Note
36 @ 7 — — —Length }
37 @ :: A — — —Note
38 ®: 7 — — —Length }
39 @ - F — — —End of tune
3A @ :: F — — —Single play

* Addresses 39 & 3A above show the codes needed to play
once only,

Did you get it right? Now key in all the data exactly as you
did for the first tune.

No.3 Musical Guessing Game

In this game, the micro plays two or more musical notes and
you have to repeat those notes by pressing the keys corre-
sponding to those notes.

Before you try this game, make sure that you understand the
previous games 1 and 2, and that you recognize the notes.

A STARTING THE GAME

Press RESET.

Press B, then RUN.,

The game has now started.

The micro will now play two notes; the first will always be
Do, which is the sound that you heard in game 1 when you
pressed 3.

B THE FIRST SOUND IS ALWAYS DO

If you press 3, you will again hear Do.

Now you must press the key (1-9, A-E) that you think will
produce the same sound as the second note you heard.

If you press the right one, you will hear the second sound
repeated and another sound added to it. And you score 1
point.

If you are wrong, the error signal will sound and you score
nothing.

Press RUN and try again.

C |IF YOU GET THE SECOND SOUND RIGHT

The micro will repeat the Do and the second sound and then
play a third sound. You must now press the Do key, the key
for the second sound, and then guess the key to press for the
third sound.

If you are right again, your score goes up to 2 and the micro
adds another note.

If you are wrong, your total score (1) is displayed on the HEX.
LED and you will hear the error sound.

D A NEWNOTE IS ADDED EACH TIME YOU ARE RIGHT

The better you are at guessing the notes the better your
memory will have to be. The micro plays all the notes you
have already guessed, including the Do at the start, plus one
more note. Each time that you remember all of the previous
notes and the new one correctly, your score increases by 1.

If you get 10 right in a row, you will hear a special end-of-
game sound and A will be displayed on the HEX. LED.

“A" ??? What does A stand for when you are counting in
hex? Yes, it stands for decimal 10 — your winning score.

. \

HOW DID YOU DO?

Keep practicing the games and trying to understand
the principles of the micro.

7,

No.4 “*Rat Bashing’’

In this game, the seven binary LEDs are "rat holes.” When one
of the LEDs lights up it means that a “rat” is poking up his
head. You have to “hit"”" him by pressing the number key
below the LED corresponding to that “hole.”

A total of 10 rats will appear during one game. At the end of
the game the HEX. LED will show your score out of 10.

1

® ®© ®© ® ® ® @ — — binary LEDs
6 5 4 3 2 1 0
I \ \ \ \ \ |
! \ \ \ \ \ !

i \ \ \ !

i \
UG M MEEEIELLEE) - - - ratbashing keys

You can control the interval between the appearance of rats
by pressing 0, 4, 8 or C key after RUN.

Re la j
[0 Y g d

long medium short very short

A STARTING THE GAME
Press RESET, C, RUN.

displsys ————-———

Now press 0, 4, 8, or C.

(WY ¥ ¥

A rat appears at one of the binary LEDs. You must press the
number key corresponding to the number beneath the LED to
score a point. A “beep” sounds if you are successful. The game
ends after 10 rats have appeared. You will hear a special
sound and your score will be displayed on the HEX. LED.
If you score 10, A will be displayed.

B TOPLAY AGAIN
To play again press RUN, then a speed code (0, 4, 8, C) and
the game wil! begin again.

sl0] &0l do] 4ol

Pressing one of these keys
after RUN starts the game.

No.5 Tennis Game

In this game, a lighted binary LED represents the tennis ball
and two number keys are the rackets. The game is for two
people,

left-hand court right-hand court

—_——

o O O O O O O
5 | 'S
key for left NET

key for right

The player in the left-hand court uses O as their racket. The
player in the right-hand court uses 3. To hit the ball, press
your key, but do not hold it down.

When the game starts, the left-hand LED will be lit meaning
the left-hand player serves first.

left right
g O O | O O O

NET

Pressing O now causes the “ball” to move towards the right-
hand court. The player to the right presses 3 to hit it back.
Each time a player makes a successful shot, there is a beep.
When a mistake is made, you hear the error sound.

SCHE

The speed of the ball depends upon where it is when it is hit.

o O oo O O O
£ E
.23 ;.E

+~ O T +

g g3 =€ 8

NET

The opponent scores a point in the following cases:

® the key is pressed when the ball is not in the court

® the key is kept pressed down

® the key is pressed too late to stop the ball from hitting the
back of the court

The ball stops at the end of the court in which a mistake
occurred. The player with the ball in his court now serves.
Not like normal tennis, is it!

When one of the players has scored 7 points the game ends
with a special sound. The two "‘courts” are used to display
each player's score.

left right ,
4 21 a4 2 7
LA S G A

Left has scored 4+2+1 =7

Right has scored only 2+1 =3

So the left-hand player has won the game 7:3.
A STARTING THE GAME

Press RESET, D, RUN in that orde"r.

B TOSTART AGAIN, press RUN.

No.6 Timer

This is a program to .instruct the micro to make an alarm
sound after a chosen period of time up to 7 minutes and b9
seconds.

To set the alarm for 3 minutes and 25 seconds.:

==> displays ——-—-@® @® @

= --—-———-- -0 0 ®
=

L
o
o
3%

f
&)
L
o
o
o
o
£
wm W W

A displays ® 0@ i@
and starts the timer

_31 —

When RUN is pressed the timer starts to count down with
one tick sounding per second.

A HOW TO READ THE DISPLAY

4218421

041000 Initial display

——— = for the 3:25 example
3 minutes 25 seconds

after l10 seconds
4218421
0 1: 000
3 minutes : 15 seconds
l
after 1 minute 10 seconds
4218421 @
00000

2 minutes 15 seconds

The LEDs show the time remaining. When no LEDs light,

000000] there is no time left and you hear the
end sound.

B TO RESET THE TIMER, enter a new time following the
example for 3 minutes and 25 seconds.

No.7 Morse Code

You can use computer codes to represent Morse codes and
the micro will play back your message.

INTERNATIONAL MORSE CODE:

N

Attention
Query (?)
Comma (.)
Period ()
Error

Received
End of message

Computer Codes for Morse
[Q (¥
ke e} T
o] @] o
(& o (&)
character ~
.. 0 9ap & 8 7-unit gap A
- 1 woon = 9 | 10-unit gap B
_ + and word
4 9ap 3 end E
- H — ” " 7 repeat F
& charac-) word gap C
ter gap and -
— " " 6 " n — D

When Morse code is being transmitted a dot takes one unit
of time. Between each character there should be a gap of
three units. Between each word there should be a gap of
7 units.

Take the word TOM as an example.
This is converted as follows:

T
— (char-gap)

6

O M

(char-gap): (word gap) = Morse code
6 5 A

5

= Computer code

A KEYING IN THE DATA

Start off with RESET, F, INCR, then continue as shown in
the following diagram:

Q)

ek
210

OF

Z
i

Da
@)

‘‘‘‘‘‘

i
23
®
i
Z

- -0

™
- -8 (9--6

o

-l

oy

~

o

g - -
w

3 -
& (
~

B CHECKING THE DATA

Press RESET, INCR, INCR, After each key stroke check
the HEX. LED to ensure that it contains the following data:

Fl 656G AHE

If the HEX. LED does not show these characters in order you
will need to make some corrections.

Start the program by pressing RESET, F, RUN. You will then
hear the Morse code for TOM..

The program can be stopped by pressing RESET. Restart with
F, RUN.

The speed of transmission can be changed by using different
codes: [0 7, 8- F
< faster slower —

The speed code is the first character to be entered when
keying in the message.

To change the speed of transmission, the contents of address
00 must be changed.

To change the speed to b, press RESET. The HEX. LED
should now display F. Change it to 5 by pressing 5, INCR.
Then press RESET, F, RUN to hear the Morse code being
transmitted at a faster speed.

Programming the Microcomputer

These games and experiments have familiarized you with your
computer.

All the games are RUN under the control of PROGRAMS.
These are sets of commands which have been precisely put
together and stored in the computer. The rest of this manual
will show you HOW to put commands together. By the end
you will know how to turn the Microcomputer Trainer into
an electronic organ or a rat-trap game or you may have
lots of your own ideas.

The commands that send messages to your microcomputer
consist of combinations of letters. They are called machine
codes. A chart with these codes is shown in the bottom left
corner of your computer. We will divide these commands
into several groups and explain them in the next few sections.

Group 1 Commands

Let's begin with a group of commands that control the A and
B registers. Remember, a register is a temporary memory
address that stores one character at a time.

The commands we will discuss are: KA, AO, CH, TIA, AlA,
and JUMP,

The A register (Ar) is the most important register. |t is used
to light the HEX. LED, to receive data from the keyboard,
and as a work area for calculations. The B register (Br) helps
Ar by temporarily storing the contents of Ar.

The diagram below shows the organization of the Micro-
computer Trainer.

A.“port” is any connection between the micro and its links
with the outside world, for example, the LEDs.

Perhaps the diagram will not mean too much to you now.
Refer back to it from time to time.

binary LEDs i
0000000 AN =E

i CPUchip == —— — -f—f—f— — I

| | >| 00-4F Port R for |

| g (program memory) lighting LEDs I

& 50-5F <r i HEX. LED

{data memor .

| v) (| Arithmetic unit DE@

i A-register | A'-register 35

| (6F) {69) o

[]2 B-register | B'-register

| 2 (6C) (67}

| & | Y-register | Y -register

' (6E) (68)

| Z-register | Z'-register

L (6D) (66)

No.8 Use of TIA and AO to turn on the HEX. LED

TIA and AO

The TIA command stands for “Transfer Into A.”
It moves data into the A register,

The AO command displays the contents of Ar on the
HEX. LED

The 'diagram below shows ‘5" is moved to the A-register by
the TIA command.

A) Key in the following program to see how these commands
work:

PROGRAM EXAMPLE — to display 5 on the HEX. LED

address 01 for
the data {5)

address |command | machine code
00 TIA 8 | Move b into Ar (the A-register)
01 (5 5 { Contents of Ar is output to port
02 | AO | 00 turn on HEX. LED.
binary LED HEX. LED
key displays the address displays the data
ecoocoocoo0 @
y Enter the TIA
: o000 O0GOO code into address
¢ EIRES
000000 " Move on to

00000 =

7357

} address 01

, address 02

After writing in the codes, read them out and check them

key
0000 O
la
40) LI N =
R QP00 O i ik
B)
as follows:
FeseT o000 O0GVOGO
00000 0

C)

yyyyyy
MENT 3

Execute the commands like this:

XX EXXK

f o000 o0o0o

®

o000 0:o0
:

o 00000 : 3

- @

v @ O @m

(See page 40.)

Execute the

first command
TIA

Execute the
second command
AO

When you pressed the INCR key, 5 was displayed on the
HEX. LED — so it worked !

The HEX. LED is

shown like this 5 The HEX. LED is shown
when nothing is {1like jchls when anything can
displayed. be displayed.

D) To change the 5 command at address 01 to the 2 com-
mand, press the following keys:

RESET) la ADDRESS Ti NeRE
Jo) 40 5
Now execute the new program:

RESET) g@ @,E

Now @ is displayed when you press INCR.

* TIA (T ransfer Into A)

The TIA command takes up two characters of machine code.
When it is executed, the second character is moved to Ar.

command ----—T | A Contents of Ar
data (5 @{I@m
8427
5

* AO (move contents of Ar to HEX. LED port 0)

AO displays the contents of Ar on the HEX. LED. Programs often
contain ROUTINES like the one you have just tried, using TIA
to move a character to Ar and AQ to display it.

“Cret = 5

The contents of Ar are not changed by this command.

No.9 Use of CH and JUMP to display 0 &

CH and JUMP

1 alternately

When you need to display two numbers in turn on the HEX.
LED, a single register is not enough. in the following program
you will use CH which means to exCHange the contents of the
A and B registers or to move what's in A to B to make room in
A for another number.

With the JUMP command, you can interrupt the sequence of
commands and “jump’’ back (or forward) to another address.

PROGRAM EXAMPLE — DISPLAY O and 1in turn

address | command machine code
00 | TIA 8 1Move'|toAr
01 1> 1
02 CH) J Move the 1 in Ar to Br
03 TIA 8
M
04 0> 0 } ove O to Ar
05 | AO 1 e Display contents of Ar
06 | CH D e Swap contents of Ar/Br
’
87 2JU>MP F] Return to address 05
8 0 0 J to repeat the LOOP
09 (5> 5

A) Enter the above machine codes into addresses 00-09.

B) Check the program and correct it if necessary.

€

C) Run the program as follows:

36—

key ;
G N (Y YYYYY)
o) e — (T YY Y @
ED —— o e0000::0 TIA oyoamand is
G 00000 :::: !
& - __ 0000::0:: !
————— 00000 @ ’
@& - 00001 @ CH "
& - eeeeces ([JUMP
o esoesze | /| O v
@& 0000 - @ CH ’
& _____ 000 0:: @ JUMP
————— o000 0 AO "
\ | \ |
| | | |
And soon each time you press INCR three times the CH,

JUMP and AO commands are repeated and the number dis-
played changes fromOto 1t0 0

Try to understand clearly what the CH and JUMP commands
are doing. CH is swapping O and 1 back and forth between
Ar and Br. JUMP is forever making the program go back to
the AO command at address 05.

® CH (exCHange a and b registers)

The CH command exchanges the contents of Ar with those of Br.
Then the contents of Ar are moved to Br and the contents of Br

are moved to Ar.
A BEFORE EXECUTING CH

Ar is assumed to contain 1 (put there by TIA)
Contents of Br are unknown — no character put into Br.

Ar Br
1 unknown
A AFTER EXECUTING CH
Ar Br
unknown 1
Now O can be put into Ar using TIA.

0 ! 1

A |F CH IS EXECUTED AGAIN the result will be:
Ar Br
1 0

The contents of Ar and Br have been exchanged once again.

e JUMP

When the micro has executed most commands it goes on to exe-
cute thé command in the next memory address. JUMP is different
— it interrupts the sequence of commands by telling the micro
which address to JUMP to next.

For example:

05 AO
06 CH
07 JUMP
08 <0>
09 <5
OA

The JUMP command occupies three addresses. The second and

third contain the number of the address to be JUMPed to. The

above program will never proceed to OA because JUMP always

returns it to Ob.

The heavy black arrow above indicates a program LOOP.

} address 05 is selected

FLOWCHART
address [command ’ ; _
00 [11Aa | C STi*R'T)
a0
01 1<V [] MoveltoAr
02 |cH "
03 | TIA B ArzBr i R Move the 1 in Ar to Br
04 <O % |
05 | A0 booioomae ca o] o Move O to Ar
06 |cCH = ———
Ar—0p o | | Displays contents Ar
07 | oump £6 ! rlup 1 play
08 |<O> | Ar2Br] |- Swap contents Ar/Br
09 [<5) 07
Return to address 05

to repeat the LOOP

A program can be presented in many different ways—as a
group of machine codes, in the form of a FLOWCHART or
by means of a collection of descriptive statements. Each
method is illustrated for program 9.

By following the arrows in a flowchart you can often see more
clearly what is going on.

No.10 Use of KA to transfer data from keyboard to display

KA is the command used to transfer the key-value (O-F) from
the keyboard to the A-register {Ar).

In this program, when a key is pressed the corresponding
character is moved to Ar. As long as no key is pressed, the
program JUMPS back to address 00. When a key is pressed,
the JUMP command is not executed and the program goes
through to address 04, where Ar is displayed on the HEX.
LED.

/

PROGRAM
address | command maccrg)igg

00 | KA © 1 If no key is struck at
01 | JUmMP F (address) 00, the program
02 | <O O | [JUMPS back 1o 00 to check
03 | <O O again.

04 | AO 1 Contents of Aron HEX. LED
05 | JUMP F 1The program JUMPS back
06 | (W O to 00 to wait for another
07 | 0 J key to be pressed.

A) Key in the program and check it.

B) Execute the program you have entered as follows:

key -
—————— eecccce]

g@ ______ PP P QPSP QPP @} (See page 40.)

All commands

. are executed.
m) oo A A A This is called
“RUN mode".

When the RUN key is pressed, the binary LEDs have the value
1, which represents the address 01. The program does not
move to 04 until a key is pressed.

When a key is pressed, the binary LEDs flash on and off very
quickly. You will probably not see more than a flicker before
they settle back to 1 (address 01).

Try pressing 6 and see what happens.

Gispressed © @ ®@ @ © @ [5 6 is displayed
These binary LEDs light = on the HEX. LED.
up for a split second.

When a key is pressed, the program moves on to the next
command, which is at address 04, instead of returning to 00,
and the number corresponding to the key pressed is displayed.
When the number has been displayed, the program returns
to 00 to wait for another key to be pressed.

The binary LEDs then point to 01 again.

® JUMP — HOW IT WORKS (2)
command FLOWCHART When KA is executed, the FLAG can be set to either 1 or O. If it
symbols (. START) is. 1, a JUMP command coming after it will be executed. If itis 0,
i KA 1 % a JUMP command coming after it will be ignored. In program 10,
I KoAP I key value is moved to Ar. as long as no key is pressed the FLAG will be 1 and the program
1 JUMP —— will return to 00. When a key is pressed the FLAG becomes 0 and
<O? the program passes the JUMP as if it was not there,
<O> If no key input, program
« returnsto KA at 00. The JUMP at 05 is always executed because AO always sets the
AO l | 11 key input: value of A is FLAG to 1. KA, M+, M—, AIA, AlY, CIA, CIY, CAL, SIFT are
JUMP ~ displayed. all commands which set the FLAG to O or 1 depending on the
, <O ' Program returns to beginning. clrcumstances.
0>
® STEP MODE & RUN MODE — HOW THEY WORK (1)
In programs 8 and 9, programs were executed by pressing RESET,
6, RUN, INCR, INCR.... This is called STEP MODE. In program
10 you executed the program by pressing RESET, 2, RUN. This
is called RUN MODE.
In STEP MODE, when RUN is pressed the first commar)d is exe-
cuted and each time INCR is pressed another command is exe-
cuted. In RUN MODE when you press RUN all the commands in
the program are rapidly executed one after the other (unless the
® KA program stops at KA).

| The KA command moves the value of a number key (0-F) into Ar.

’ if a key is not pressed when the program encounters the KA, a STEP MODE is selected by entering 6, RUN; RUN MODE is
FLAG is set to 1. This tells the program to execute the next step selected by entering 2, RUN. Which one you will be instructed to
which is the JUMP command. use depends upon the program.

If a key is pressed when the program executes the KA command, There will be more information given about MODES after the
the FLAG is set to 0, meaning to ignore the JUMP command and next program.
look for the next command.

.

No.11 Use of AIA to add numbers together

You have already learned how important the A-register is. You A) Key in the progaram.
are now going to use the AIA command to add a number to
Ar and store the answer in Ar. B) Check the program and correct it if necessary.

e A|A COMMAND (Add Into Ar)

AlA takes up two lines of code; it is a TWO-WORD command.
The second line contains a number which is added to Ar and the
answer is stored in Ar.

C) Run the program.

Execute the program by pressing the following keys:

KEY L
' PROGRAM eecocee [B]
address | command mggg:ene 77
&
8/}0 <TZI>A 2 } move 2 to Ar. @g _____ 000000 LE}
02 | AO 1 ...contents (2) of Ar displayed — e00e00 o TIA is
03 Al A ¢} } 7 is added to Ar and the answer) executed.
04 (7D 7 moved to Ar, L eeeoo0e0 : - @ AO is
05 JUMP F y : executed.
06 1)) 0 If there is a CARRY (answer &= _ _ _ _ _ ; " AlA is
07 (5) 5 J more than F) program stops. = LA ® @ executed.
08 JUMP ~] If there is no CARRY (answer M) — = 00 i o000 JUMPtngt
09 0> 0 J between O & F) program returns executed.
0 A (2> 2 to 02 to repeat addition. e ecoeoe o @ JUMP is
executed.
FLOWCHART I w (7 AOis
CTESHEETD) 0000 L% executed.
00 AlAis
[z—ar V|| [&ermae] { = TT0- ®©600 0 @ executed.
YES eete—— | = N » JUMP is
EQ Ar..,fop'}-,'E\X.LED W@@ —) - - 000 0 EQJK executed.
‘ ‘ - = JUMP is
T 0000 @ executed.

In this program the FLAG will be set to O or 1 by AlA, de-
pending upon whether there is a CARRY. Now we will look
again at HEX addition.

At03,weadd 2+7=9inAr:

Ar AlA data Ar
2 +7 -9
no CARRY; FLAG=0
But next time (at 03) we added 7 & 9:

+g and there is a CARRY (so FLAG =1)
0 because in hex counting you cannot

exceed 16 (F) without carrying over.
So the program ends.

e STEP MODE AND RUN MODE (2)

STEP and RUN MODE have been explained under program 10.

a) In STEP MODE there are two methods of execution:

1) Addresses are displayed and key strokes sound. Press 6, RUN.
The first command is executed and the binary LEDs display the
address of the next command. Press INCR. The next command is
executed and the binary LEDs display the address of the next
command.

Go on pressing INCR and you can follow the course of the pro-
gram right through to the end (if it has an end). Each time you
press RUN or INCR you will hear a sound.

2) Addresses are not displayed and there is no sound when keys
are pressed. Press 5, RUN. The first command is executed and the
program stops. Each time you press INCR another command is
executed. Addresses are not displayed on the binary LEDs so that
these can be used to display other data.

b} RUN MODE also has two methods of execution.

1) Addresses are displayed and RUN key makes a sound. Press
2, RUN. Commands are executed in rapid succession. This is how
you run program 10.

In program 10 a key might not be pressed between addresses 00
and 01, so the binary LEDs show 00 and 01 in turn. But the
change from one to another is so rapid that the display seems to
be stationary at 01.

A sound is generated when RUN is pressed but not when a number
key is pressed.

2) Addresses are not displayed and no key-stroke sound is gen-
erated. Press 1, RUN. Commands will be executed without inter-
ruption but no address will be displayed.

’
Review this section carefully and make sure that you understand
the work up to this point.

No.12 Display Hex Numbers in ascending order

Programs 8-11 showed how the first group of commands is used (KA, AO, CH, TIA, AIA, JUMP).
The next few programs are going to show you how to apply them to the kind of tasks that com-
puters are doing all the time, such as counting — in hex, binary, and decimal.

PROGRAM
address | command mgggé”e
00 |[TI1A 8
01 |<» 0
02 |AO 1
03 |CH 2
04 |KA 0
05 |JumP| F
06 [0
07 |<a» 4
08 |CH 2
09 |[AlA 9
oA | 1
0B | CH 2
0C | KA 0
0D {JUMP| F
0E <1 1
OF <3 3
10 [JumP| F
11 <o 0
12 | C
13 |CH - 2
14 [JUMP| F
15 <o 0
16 |2 2

FLOWCHART

AL]

03

[- ACCBr]
— | u
{ _Koar |

o

o ST

NO YES 08

I A;'r"sr]

|
1/
| K—Ar ODI 1
|
)

14

NOTE:

The series of two-digit numbers at the right hand side of the flowchart cor-
respond to the addresses in the program.

1)

0 is displayed at address 02. Then each time the program returns to 02 by
means of the JUMP command at address 14 the number displayed increases
by 1 because of the AIA command at 09.

2)

The contents of Ar are stored in Br because any value entered at the KA com-
mand is going to replace whatever was in Ar before.

If no key is pressed, the program JUMPS back to 04 for another “look”. If
a key is pressed the value stored in Ar is swapped with Br.

3)
The total so far, which is now held in Ar once again, is increased by 1 and the
result is stored in Br again and on and on.....

4)

As long as the key pressed at the previous KA command is held down, this
bit of the program keeps returning for another look. Compare the action
taken at address 0D-12 with the action at 05-07.

When the key has been released, the accumulated total is restored to Ar and
the program returns to 02 to d|splay the contents of Ar.

A) Key in the program and check it.

B) Start the program by pressing RESET, 1, RUN.

AAAAAAA oo 00000 {B}
S e ——— oo 00000 [j

When RUN is pressed, O will be displayed; then each time any
of the keys O-F is pressed and released the display will be
increased by 1, as shown below:

g8 49 A--—F
el

This program may seem a bit difficult if this is all new to
you. But keep at it!

By the time that you have reached program no. 21, the way
that this program (no.12) works will seem quite familiar and
straightforward. What is more, you will be able to use parts
of it in your own programs later on.

ADDITIONAL NOTES ABOUT PROGRAM 12

Notice that the CH command is used no less than four times.
This is because any key pressed at a KA command causes the
previous contents of Ar to be overwritten. As Ar is also used
for increasing the count by 1, each time that there is any
chance that Ar may be overwritten by a KA, the count must
be stored and restored afterwards; and since there are two
KAs in the program, each of them needs two CHs to achieve
this.

No.13 Display Odd Hex Numbers in ascending order

PROGRAM FLOWCHART
address | command mggg;;e C START.)
00 TiA 8 1 DCM 1 to Ar to be displayed
i A R , e
01 <D 1 Lot l firar, | [© A to be displaye
02 AQ 1 = i Display Ar on HEX. LED.
03 CH 2
04 KA 0 . Stqrfa Ar in Br to avoid over-
05 |uumP| F wriing.
06 [0 B II Fl)<ey input — go to next
! step.
07 4> 4 | No key input—wait.
08 CH 2
098 ATA g Return stored count to Ar
OA (2> 2 from Br.
Add 2 (alt

0B CH 2 ‘ numberstgis:):l(::/r;fj) eernate

KA 0
88 JUMP F Store count in Br again.
OE 1 1

I 1f k il - d—wait, If
?g fJaLjMP 2 key ?Zlesatsledgrgzsio 1;{8“
11 <O» 0
AL S| T oA
14

14 JUMP F
15 0> 0
16 (27 2

a7

A) Key in the program and check it.

B) Execute the program by pressing RESET, 1,
RUN. i
When RUN is pressed l] is displayed. Each time
you press and release a key, odd numbers will be
displayed in the following order:

FETE LG F 3

Compare this flowchart and program with the flow-
chart and program in No.12. You will find that the
only differences are that TIA puts 1 instead of O
into Ar at 01 and AIA adds 2 instead of 1 to Ar at
OA. Look at the diagrams below to see the differences
put in another way.

wiz @ 52 i3 --F o

interval — — 1 1 1

interval — - o 2 2

No.14 Display Even Hex Numbers in ascending order, once only

PROGRAM FLowcHART &%
address | command| Mmashine C START)

00 TIA 8
81 (2> > gﬂi:ggy? to Ar, for the first

2 AO 1 Display contents of Ar on
03 CH 2 HEX. LED.
04 KA 0 Store Ar in Br to avoid
05 JUMP = overwriting.
06 14e)) 0 Ke_y input: if no key pressed,

wait.
8; ((;1_‘) g II key pressed, go to next
step.
82 ?\2|>A 2 [Ar.,Br I) fioe;zt?re value last displayed
8 (E; 2Jou> MP| F AT+ 2—-Ar OAS’S 16 be diaprayed T
0 +
0D <B
0E Clj 2 j 1f CARRY, STOP.
Ar;.“Br "y ") Otherwise store Ar again.
OF | KA 0 "
OF
10 | JUMP F l ‘ K—»Ar] \
11 1> 1 10 ’(13?\'305 if key is still
e wn.

12 <6> 6 |1f6yes,0war;t. If no, go to
13 JUMP F ’
14 <O 0 [ArBr "] Restore Ar from Br again.
15 | <P F 17
16 CH 2 Return to 02.
17 JUMP F
18 |<O» 0
19 (2> 2

@7@ A) Key in the program and check it.

B) Execution—press RESET, 1, RUN to start.
When RUN is pressed, the HEX. LED will display

2. Each time you press and release a number key
the display increases by 2, like this:

g6 B8R DIE---

When the display shows E, the program will stop.

Now compare program 13 with program 14. Apart
from the fact that one displays odd numbers and
the other even numbers, the main difference is
that No.14 stops after it reaches E.

No.15 Display Decimal Numbers in ascending order, once only

PROGRAM ,
address |command | Machine -
00 TIA 8
01 qoy O
02 AQ 1
03 CH 2
04 KA 0
05 JUMP F
06 <O 0
07 ' <4 4
08 CH 2
098 AlA 9
OA 7> 7
OB JUMP F
0oC qey; 0
oD B> B
OE AlA 9
OF <A A
10 CH 2
11 KA 0
12 JUMP F
13 1> 1
14 (8> 8
15 JUMP F
16 1> 1
17 1> 1
18 CH 2
19 JUMP ~
1A <O 0
1B (2> 2

FLOWCHART

Move O to Ar for the first
display.

Display contents of Ar on
HEX. LED.

Store contents Ar in Br to
avoid overwriting.

Test if key pressed.
i If not, wait.
| If yes, go to next step.

Restore value last displayed
to Ar.

|
| Add 7 to Ar.
ves | IfCARRY,STOP.
¢ Otherwise, go to next
l step.

Add A to Ar.

.]! Store contents Ar in Br.

|

i Check if key is still being
{ beld down.

{ If yes, wait.

If no,go to 18.

L arZBe | Restore Ar from Br.

Return to 02,

A) Key in the program and check it.
B) Execution—press RESET, 1, RUN to start.

When RUN is pressed the HEX. LED will display 0.
Each time you press a number key the display will
increase by 1, until you reach 9. Then the program
stops.

Adding 7 and A to Ar? It's a clever binary trick!
Refer to page 14 where we explained calculating in
binary. Adding 7 to A number results in a carry
if the number is equal to or greater than 9. At address
09, the program checks to see if the number in Ar
is 9 or greater by adding 7 and checking for a carry.
The purpose of this program is to increase the num-
ber in the Ar by 1 each time. So when we add 7 at
address 09, we're adding 6 too many. To get the
desired result, the program deducts 6 (see page 14).
6 in binary is 0110 inverting 1 and O we get 1001.
Adding 1to this result, we get 1010, 10 in deci-
mal, Ain hexadecimal. This is the reason we add
A at OE.

(No.16 Display Odd Decimal Numbers, once only

PROGRAM FLOWCHART

address |command | machine (& @@@r\'

00 TIA 8 ; o

01 1> 1 i 1 t’;/':(s);;y1 to Ar for initial

02 AQ d | EE——— '

03 CH 2 } Display contents of Ar on . .

0 A S HEX. LED. A) Key in the program and check it.

Store Ar in Br to avoid

82 ZJoU>MP g overwriting. B) Execution —press RESET, 1, RUN to start.

07 4> 4 — . .

08 |cH 5 1 ?;ezf)f%aﬁtey input: The program displays the odd decimal numbers 1, 3,
09 AlA 9 | If ves, go to next step, 5, 7, 9 when you press a key. It is very like No.15 ex-
oA | 7 ‘ cept that the count increases by 2 each time instead
0B |uump F] Sestore value last displayed of by 1. This is why B is added to Ar at OE, instead
oc | 0 of A. (B is 1 more than A).

0D B> B8 |

0E |AIA 9 - CARRY STOP. Consider again what happens when binary numbers
OF B> B { If NO CARRY, go to are added. In No.15 we saw that binary 5+ binary 7
10 CH 2 | next step. = 1100, with no carry. Here is what happens when
1 ; SSMP 8 , } Add B to Ar. binary 7 is added to binary 9:

13 < 1 | Store contents Ar in Br Ar=9.......... 1001 in binary

12 38U>MP g ' Ar+7 ... 0111

\ e 2ttt
16 1 1 ’l IKfey still held down? (1) 0000 There is a carry !
es, 1.

17 1> 1 I xo,gv(\)/at'o 18. . R .

18 | CH 2 | Because there is a carry, the FLAG is set to 1, and the
190 JUMP E } JUMP is executed.

1A <o) 0 l L ATEBR]3 Restore value in Br to Ar.
18 2 2 "] Returnto 02.

..48_

PROGRAM
address |command '“gggg;e
00 TIA 8
01 2> 2
02 AO 1
03 CH 2
04 KA o)
05 JUMP =
06 <O)
07 4> 4
08 CH 2
09 Al A 9
OA (8> 8
oB JUMP =
oC <1 1
oD KC> C
OE Al A 9
OF <A A
10 CH 2
11 KA 0
12 JUMP ~
13 1> 1
14 8> 8
15 JUMP F~
16 1> 1
17 1> 1
18 CH 2
19 JUMP F
1A <O> O
1B (2> 2
1C T1A 8
10 <O 0
1E JUMP F
1F 1> 1
20 <0> 0

No.17 Repeated display of Even Decimal Numbers, in ascending order

FLOWCHART
(__START
00] M 2 Ar for initial
NEP ove to Ar for initia
l ‘EIAF 1! display.
02
i g e e Display contents of Ar on
L areop 7] GEE9Y R
03
PSS Store contents Ar in Br to
[L AreBr j) avoid overwriting.

Test for key input:

If no, wait.
If yes, go to next step.

08
Move value stored in Br back
o
L ArBe j ' to Ar.
i 0
L__art8—ar ~]| addstoAr
og ¢ Ifcarry,go to 1C.
Tarry | 1 nocarry, go to next step.
YES
NO 0E
CAL 4 A2 Ar
l 1 - —l } Add A to Ar.
. 10
' Lol APTEBr —' I Store contents Ar in Br.
1 11
L kear

Check if key is still being
held down:

If yes, wait.

If no, go to 18.

12

L o Ar>Br B I } Move contents Br back to Ar.
| R
Return to 02.
5 | If8 just displ d e
- was just displayed, movi
l O—Ar —l ! 0to Ar.

Return to 10.

A) Key in the program and check it.
B) Execution —press RESET, 1, RUN to start.

Each time you press a key, even numbers are dis-
played in ascending order.

The new feature in this program is what happens at
OB if there is a carry. Instead of stopping, the pro-
gram JUMPS to 1C where Ar is set to O for thé next
display command.

What is happening ?
We start with 2 in Ar and this is increased by 2 each
time we go through the loop. When the display

reaches 8, what happens is this: —

{binary 8)

(1) 0000 Thereisa carry,

The carry is dropped and the next number to be
displayed is 0 and the JUMP to 1C is the best way to
get O into Ar. Notice that the program then JUMPS
back to 10 to check that the key has been released.

No.18 Repeated display of Decimal Numbers in descending order

PROGRAM FLOWCHART A) Key in the program and check it.

address | command | mashine C - START
00 1T1A Cog B) Execution —press RESET, 1, RUN to start.
01 o) 9 yMove 9 to Ar for initial '
02 AO 1 display. When RUN is pressed, 9 is displayed. Then each time
03 CH 2 ™), Display contents of Ar on that a.key is pressed and released the displayed value
04 KA 0 HEX. LED. is reduced by 1. When the display reaches O, it goes
05 JUMP = } Store contents of Ar in Br. back to 9 again.
06 <O 0
07 {Ad 4 Check for key input. This is the first program to inplude binary deduction.
08 CH 2 If no, wait. ft may seem strange that if F is added to Ar the value
09 |AIA 9 I ves, go to next step. of Ar is reduced by 1. But remember, the program
8@ <JI:U>MP E L\gox:'value stored in Br back drops any carry over.
0oC <1 1 Here are some examples: —
0D <07 0 —J | Add F 1o Ar:
OE |TIA 8 %8 if carry, go to 10. 1....0001 6....0110 0....0000
?g E9H> g vES : It no carry, go to next step. +F L. 11T HFLL 1 R 1
11 KA 0] I ; |)/Move 9 to Ar. = {1) 0000 {1) 0101 (0) 1111
12 JUMP F N — 10
13 1D 1 [arzer] Storecontentsof Arin Br. Do you see the “odd one out”? It is O+ F because
14 (8> 8 that is the only one where there is no carry. in
15 JUMP F Check it key s still program 18, when there is no carry at OB this is be-
16 [<D 1 pressed: cause the last value displayed was 0. So we want to
17 1> 1 | :ngslg"c‘)’at‘;-w put in 9, into Ar, ready for the next display, and this
18 |CH 2 ' ' is exactly what happens at OE.
19 [JUMP| F R NN
1A <02 0 I19 Arzbr]y Movevaluein Brback to Ar If you are not clear about any points refer to earlier
18 <2 2 Return to 02. parts of the manual.

No.19 Display Hex Numbers in descending order, once only

Compare this program and flowchart with No.12.

PROGRAM) FLOWCHART The difference is that in No.12 Ar starts with 0,
address | command | machine C START) and 1 is added at OA, and in No.19 Ar starts with F
00 |TIA 8 0 and 1 is deducted at.OA, as explained in program
01 FY = L FsAr —‘I } 'c\!Aisop\)lleayF to Ar for initial No.18.
02 |AO 1 ——l o
03 |CH 2 [T A=Gp | Display contents Ar on HEX. Here is how this program works: —
04 | KA 0 ; ;[, -0 _ binary hex
0b JUMP F | ArZar] 1 Store contents Ar in Br. F 1111 F
06 |0 0 ——] 04 *F 3
07 4> 4 L_ K=ar] | Check for key input: NN F
08 |CH 2 05'r$o~wait. 11110 E (F-1)
- es — t t step.
08 JAIA 9 No —sey down S0 fo nextstep The carry is dropped and the result is E.
OA <P F 08 YES
0B JUMP = L ppesere .| Move value in Br to Ar. E+F 1110 E
88 21; J [Amps;.Aerjg + 1111 F
Add :)
0E JJUMP F 8 CarryF_fC;?;()H. . 11101 D (E-1) |
%)F <O» 0 T Carry ¥ == J No carry — STOP. The carry is dropped and the result is D.
] (1) <CEH> S - NO _YES ... and so on.
12 KA 0] Arz2Br-]) Store contents of Ar in Br.
L |1 Store contents of Ar F is continually added to the preceding result stored
13 |JUMP| F | 12 ! _
14 1 a1 o in the Ar and the total is always one less than before.
15 [<o 9 5 | ok for ke s baing o . _ CouE
16 | JUMP = =Ky downz — Yes — wait, € onty sum In binary not to give a carry is 0 + F,
17 < 1 = o [No —go to 19. For all other sums there is a carry and the FLAG is
18 <2 2 1 set to 1 and the JUMP at OB is executed :
19 CH 2 [ArTBr] » Move value Br to Ar.
TA | JUMP F A O+F 0000 0
1B <O 0 Return to 02. + 1111 F
1C [2 1111 =

There is no carry so the program ends.

This is another difference between No.12 and No.19:
in No.19 the countdown stops when it reaches 0.

A) Key in the program and check it.
B) Execution — Press RESET, 1, RUN.
When RUN is pressed, F is displayed. Each time that a key

is pressed, the value displayed is reduced by 1:

Example:

Ed0 kLA @B 0ES

9 32 140

After O is displayed, no further change takes place; the
program ends.

The explanations given for the flowchart to program No.12
are very important. The logic used there is also used with very
little change in programs 13-19 and will continue to be used
throughout this manual. Logic refers to the key input routines.

You must be clear on the following points.

First, the importance of the KA command in all of these
programs.

The purpose of the first KA command is to allow a key to be
pressed and that value to be stored in a register.

The purpose of the next KA commands in these programs is
to check that the key which was pressed at the first KA has
been released. The Microcomputer Trainer works very fast.
If the second KA is left out, when a key is pressed at 04, the
program will go through its loop and return to 04 again before
the key has been released. Since the FLAG = 0 as long as a
key is held down, the program will be able to increase or
decrease the count again — and the loop may be repeated
many times like this before the key is finally released.

Remember this when you write your own programs.

The second important point here is that you must not forget
to SAVE the contents of Ar before executing a KA command.
The contents are safe if they are stored in Br, using the CH
command. But if you forget, then the previous contents of Ar
will be lost as soon as a key is pressed. And don’t forget to put
it back into Ar when the key input routine is complete.

Refer back to program No.12, if you're still unsure.

No.20 Electronic Dice — stops when key is released

This program displays only the numbers you find on dice (1-8)
in rapid succession when you press a key. Release the
key to display the number you have “rolled.”

PROGRAM FLOWCHART
address | command | machine (START .)
00 |TIA 8 , w
01 <1 1 L | _
0 é AO 1 l = 02' Move 1 to Ar, display Ar.
03 |CH 2 Aot :
I 0
8 é SSMP [9 | AV’Z,*IB"]} Save contents of Ar in Br.
0 <O 0 e S xu
0 673 4> 4 1) cheek if key is held down:
08 CH 2 : ’\\l’gs_—v;g.ttb next step.
09 |AIA 9
0A A A [Ar.’_.'Br ‘) Move value in Br back to Ar.
0B | JUMP F T o
0oC (o) 0 [: Ar+A...Ar i o A
O D <O> O 0B é:rdrf—t re/?L';.rn to start.
0OE Al A o} Yﬁy No carry — go to next step.
oF |7 7 e
10 |JUMP| F L Ar+7-Ar || Add71t0Ar.
M 0 0 _—_l 0 Return to 02.
12 {2 2

A) Key in the program and check it.
B) Start the program by pressing RESET, 1, RUN.

When RUN is pressed the HEX. LED displays 1. If a
number key is pressed the HEX. LED changes very
rapidly and stops only when the key is released. It
starts again when a number key is pressed again.

There is some new binary arithmetic demonstrated
here. We want to restrict the display to the numbers
you expect to find on a dice, i.e. 1—6. When the
program has counted to 6, the A added at that point
gives a carry in the answer and this causes the pro-
gram to start again from the beginning. If there is no
carry, then 7 is added and this increases Ar by 1.
(Check program No.15 again where A and 7 are used
to add 1 to Ar, but the other way around).

Try adding binary A yourself to binary 6 to check
that the answer has a carry.

No.21 Electronic Dice — stops when key is pressed

In this program, the electronic dice stop “rolling” when you press

a key.
PROGRAM FLOWCHART
address | command| machine C START D)
00 TIA 8 _—"1 . AOO Move 1 to Ar.
01 <1 1 I ﬂHA(F___] ’ Display contents of Ar
02 ACO 1 fz Ar‘—;lOp l ~on HEX. LED (starts 1).
03 |CH 2 = 4
04 KA 0 I A —Br] . gz:ve contents of Ar in
05 |JumP| F 1 ! '
06 1) 0 [~K—Ar l 1 Eheck for key being
Id:
07 B> 8 [Ves — STOP.
! 08 JUMP = No — go to OB.
09 <O> 0
OA (8> 8
08 CH > I Ar—Br] \ g/;%\l/(etgakjre stored in Br
oc |AlA 9 — NN : '
r+A—Ar Add A to Ar:
00D CAD A 0E] Carry —OretLrJrn to start.
0OE JUMP = w [N[o carry — go to next
' step.
0OF |<O» 0 e NO_
10 | 0 L ar+7-ar Tl Add7t0Ar
11 Al A 9
l} 1 g % FZ Return to 02.
J 1 JUMP
14 <O> 0
15 (2> 2

A) Key in the program and check it.
B) Press RUN.

When RUN is pressed, the display will change very
rapidly. |t will stop changing as soon as a number
key is pressed. Once it has stopped it can be restarted
only by pressing RESET, 1, RUN.

Let us try to change this program, to make it start
automatically when the key is released.

First, at 09 change the O to 1 and at OA change the
8 to 6. Then at 16 enter the following code in the
usual way:

address | command key address | command key
16 KA 0 1A JUMP F
17 JUMP F 1B (n 1
18 (0) 0 1C (6) 6]
19 {0)] 0

Check it and run the program again. Press RESET, 1,
RUN.

(2) Group 2 Commands

The next group of commands are AM, MA, M+, M—, T1Y, ALY,
and CAL TIMR. All of them except CAL TIMR involve the
use of the Y-register and the user MEMORY.

The word MEMORY is often used to describe a group of
addresses. In program 22, data will be stored ‘in MEMORY"’.
Examine the diagram at the end of “Group 1 Commands”.
The memory addresses 50-6F have been set aside for data
storage. It is these addresses which the Y-register (Yr) uses:

Valde of Yr | Address...*| Value of Yr Address...*
0 | 50 | 8 . 58
1 | 51 ;; 9 . 59
2 52 | A 5A
3 53 | B 58
4 54 | C ! 5C
5 56 D | 50
6 56 E | sE
7 57 | F | 5F

* This column indicates the address used or ‘‘pointed to” by
each particular Y-register value.

Addresses 50-5F are similar to the addresses previously used.
But with the help of Yr, data can be stored in them or read
from them, so they have a special usefulness.

Yr can also be used as an extra register and for many of the
same purposes as Ar.,

TIMR is one of 16 subroutines used by the Microcomputer
Trainer. They are discussed in group 3 commands.

CH COMMAND (2)

CH was first discussed under Program No.9. It was used to swap
Ar/Br contents.

But it can also exchange the contents of the Y and Z-registers:
Ar Br Watch out because both
swaps take place simul-

v Zr taneously.

CAL COMMAND — (1). CAL is short for CALL.

It is always followed by a subroutine — such as TIMR. A SUB-
ROUTINE is a group of instructions that do a particular job.
TIMR counts fractions of seconds. CAL calls subroutines, executes
them, and then the program continues.

No.22 Use of TIY, AlY and AM to store data in memory

TIY COMMAND (Transfer Into Yr)

This command uses two characters of machine code. The value
of the second is loaded into Yr.
In.a flowchart it is written: n = Yr, where n =0-F.

AM COMMAND (Transfer contents of Ar to Memory)

This command moves the contents of Ar into the address (50-6F)
pointed to by Yr. (Yr is set by using T1Y).
In a flowchart it is written: Ar = M,

AlY COMMAND (Add Into Yr)

This command uses two characters of machine code. The value
of the second is added into Yr and the result stored in Yr.
Itis written: Yr+ n— Yr, where n = O-F.

PROGRAM FLOWCHART
address | command | mashine C START.)
00 TIY A 0
Ui Eesyr o 1y Point to address 50.
8 12 <KO£ 8 [_— 0 “Yr' (((I)tlgcikotae crt?asft on previous
22 page.
03 |uumP| F N
. Key not pressed — t.
8;1 <O> g 3 Kez pre‘s)secis— gc\)NatIo next
<27/ " ~ step.
06 AC 1 %
07 A 0 [BiEsBlay character on HEX.
08 JUMP i
09 <O» 0)
oA | £ e et
08 JUMP = ‘ No — go to. next step.
oC <O 0
0D |<7» 7 -
OE AM 4 I AR] 'Move contents of Ar to
OF ALY B l 9 g‘hen\;ory address pointed to
10 < 1 T
Add 1 to Yr.
11 |oumP| F |
12 e 1 | ’
13 | 1 | Gheck for carry:
14 JUMP F . No — go t0 02.
15 |<o» 0 |
16 (2> 2

This program is another example of two KA commands being
used in different ways. At the first KA, the program waits if
a key has not been pressed; at the second, it waits if a key has
not been released.

The program ends when data has been stored at all 16 ad-

dresses

50-bF.

A) Key in the program and check it.

B) Start the program by pressing RESET, 1, RUN.

C) Press 16 number keys to store the values in memory.

For example, press kéys O-F in order as follows:

[0} %al gl Yol

G gives the display
*[0]
<[0]

NCRE

‘‘‘‘‘

5 @ i

Yol .[o]

D) TO read the contents of addresses 50-5F, press these keys:

So it worked! The program started with O in Yr. This caused
the first character you keyed in to be stored at address 5O.
Then 1 was added to Yr so that your next key value was
stored at b1 and so on.

No.23 Use of MA to display memory contents

This program displays the contents of 50-5F in turn.

MA COMMAND
to Ar)

(Transfer

by Yr and moves it to Ar.
In a flowchart it is written: M - Ar.

contents of

This command reads the value of the address pointed to

Memory

PROGRAM FLOWCHART
address |command | machine C START)
00 TIY A 00
01 <O» 0 l SR o 0 ¢ 1 ! Point to address 50.
02 MA 5 I M}»Ar 02I) Move content; of the point-
03 CH 2 l - ed address to Ar.
8 ;1 SCMP g ‘Y\:Ei: f Save contents of Ar in Br.
06 |[<O» 0 C | 01
K—Ar Key i :
07/ 4> 4 k } Nz\t/ ylar:g:s;d — wait.
8 S SGM - g No Pressed — go to next step.
YES 08
OA [<O 0 [=
0B FY F 09 i I\; key stililtheld down:
es — wait.
0C |JUMP| F =E&L dOMIT== | o' go to OF.
0D <O> 0 YES - /
OE 8> 8 ArZtBr | Move value stored in Br back
O F CH 2 Yr:zr J to Ar.
10 AO 1 1 10, Display contents of Ar
11 ALY B L Ar—-0p } (Z\éalue) read from pointed
; address).
12 N !] Yr+ 1Y]
13 JUMP = Add 1 to Yr.
13
14) 1 ‘ Carry?
15 <3 3 o ves U0 T et 002,
16 JUMP F
17 <O> 0
18 (2> 2 -58-

A) Key in the program and check it.

B) Load any 16 key values (0-F) into 50-6F. i.e.,

C) Press RESET, 1, RUN to start. Then press any
number key to display the contents of each ad-
dress bO-5F in turn once only.

No.24 Use of M + to add to displayed numbers

M+ COMMAND

This command adds the value of the address pointed to by Yr to
Ar and stores the answer.in Ar.

In a flowchart it is written: M + Ar = Ar.

If the addition generates a carry, the FLAG is set to 1.

If no FLAG is generated, the FLAG is set to O,

When a JUMP or CAL command directly follows the M+ com-
mand, it will be executed if the FLAG is set to 1, but not if it is

set to 0.

PROGRAM FLOWCHART
address | command mé’gé‘g’e (" START b
00 TIY A 3 0
01 <O 0 l s Qe j ,/ Set pointer to address _SE)
02 |TIA 8 : 2
03) 0 L oo OAr 1 ! Start off with 0 in Ar.
04 AM 4 Store contents of Ar at ad-
05 AO 1 dress 50.
06 KA 0 Display contents of Ar.
07 JUMP F Key inbut
input:
08 <O» 0 Noykeyppressed — wait.
K ed —
09 6> 8 stzg. press go to next
OA M+ 6
0B CH 2 21 Add contents of address 50
0C KA 0 | to Ar,storein Ar,
0D JUMP E Save contents of Ar in Br.
0OE < 1 ;
OF (3> 3 | Check if key still held
10 [JUMP F down.
If yes — wait.
11 O 0 1fno—goto 13.
12 K> C
13 | CH 2 pp , .
14 JUMP E ; Yr{’Br f ng/\(?-value stored in Br back
15 <O» 0 | 14
16 (4> 4 ——————J Return to 04. ~-59-

This program displays a figure on the HEX. LED and
adds it to any value keyed in.

A) Key in the program and check it.
B) Start the program by pressing RESET, 1, RUN.,
C) The display starts off with 0.

Key in any value O-F and it will be added to the total
which will be displayed. If you key in 1,2,3,4,5in

order, the results will look like this:
%ol 7 M0 3 D & MO A WO F

When the sum is larger than F(15), the carry is
dropped.
For example:

1000 (8)

+ 1010 (10)

dropcarry 1 0010 (2)
2 isdisplayed.

No.25 Use of M — to reduce a displayed value

In No. 24 M+ was used to demonstrate addition. Here M— is PROGRAM FLOWCHART
used for subtraction. address | command | M250:"° C_SIART)
00 TILY A ‘
M— COMMAND 01 <O> 0 " Set pointer to address 50.
In a flowchart M— is written: M—Ar — Ar, 0z |TI1A 8 |
This command subtracts the contents of Ar from the contents 03 > = ' Move F to Ar.
of the memory address pointed to by Yr and puts the answer in 04 AM 4 Store_contents of Ar at ad-
Ar. 05 AO 1 dress 50.
If the value of Ar is greater than the value of the pointed address, 06 KA 0 iR Eri:‘sgl.ay contents A on HEX.
the subtraction cannot be done. This condition is called OVER- Q7 JUMP F i
FLOW. The OVERFLOW condition sets the FLAG to 1. Other- 08 <O 0 | Key input: .
wise M— sets the FLAG to 0. 09 (6> 6 : g‘éis%;esfego_mwf;& step.
M— also affects JUMP and CAL in the same way as M+. Refer back OA M- 7 ‘
to Program No. 24,
0B JUMP F i Subtract contents Ar from
oC <O> 0 | contents of address 50 &
. - | store Itin Ar.
A) Key in the program and check it. 00 | <& = Overflow — STOP,
. OE CH 2 Not overflow — go to next |
B) Start the program by pressing RESET, 1, RUN. 0F KA 0 step.
o) 10 JUMP E "] save contents Ar in Br.
C) The initial display shows F. » <1U> 1
) 12 (6> 6
F Wlll be rgduced by the value of the keys pressed 13 | oume c | Key still pressed?
until the display reaches 0. The program also stops | Yes — wait.
if the result is less than O. T4 <0 0 ' No —goto 16.
15 F> =
(= e ‘=) ‘o e oM i 16 H ‘
}F\ 113@ {E; LI@ LE\ l]su@ Q‘ Iie@ |5 =I@ EQ} 17 SUMP E : Move contents Br back to Ar.
' 18 | 0
19 4> 4) Return to 04.

No.26 Use of CAL TIMR

CAL TIMR COMMAND (CALI TIMeR)

When this command is executed a pause occurs. The length of
the pause is determined by the value of Ar, This is the formula:

contents of Ar + 1
seconds = 10

In program No. 26 the length of the pause is (5+1) + 10 = 0.6
seconds,

PROGRAM FLOWCHART
address fcommand | machine C START D
00 TIA 8 1 i
01 [5 L 5=ar]
02 CH 2 ’ l v | Set timer value to 0.6 sec-
03 Ty A ArZBr ‘ onds and store in Br.
Yrztzr :
04 |0 0 T -
05 MA 5 I O=Yr | - Set pointer to address 50.
06 AO 1 ,[X
07 CH 2 L M’IAr I . Read contents of pointed
08]rCAL = I grrnn r_)ﬁi ‘ zcr!‘ld}:%s;-lrtthér and display
09 [LTIMR C T
OA CH 2 Ar—Br 1
0B ALY 8 YrZr Get timer value from Br and
00 15 1 l o | activate timer.
00 |uumP| F L_ca JWR
OE [<O» 0 Y a— . .
oOF D> D Yizzr | Put timer value back in Br.
10 JUMP F i 8
1 0> 0 [vre1ovr]} Add 1 to pointer.
0o
12 5> 5 ' Carry?
m YES i Yes — STOP.

NO i No — return to 05.

A) Key in the program and check it.

B) Key values (0-F) into addresses 50-5F
Example: '

N3] <) @ 5] @ UE & U] @ L &

C) Press RESET, 1, RUN to start.

The HEX. LED will display the characters you have
loaded into 50-6F addresses at roughly half-second
intervals.

TIMR is a very important subroutine. Programs which
display figures, like this program, need to pause be-
cause - of the speed at which the Microcomputer
Trainer works. You don’t always want to make the
operator press a key to display a new figure.

No.27 Load Zero into Memory

This is a simple loop which starts with 0 in Ar and puts it into A) Key in the prbgram and check it.
each of the addresses bO-bF in turn.

B) Start the program by pressing RESET, 1, RUN.

PROGRAM FLOWCHART C)} Check that O has been loaded at all addresses:
address | command mgggg‘e (C SIART D)
00 TIY A o ot ispl 000000
01 40 0 r O—Yr l y Set pointer to address 50. ==y dlSp ays
02 |[TIA 8 & i : =
03) 0 [O—Ar H Move 0 to Ar & store con- "1}@ dISplays LA L B EJ
____>1 04 1 ‘cen.ts,t gf d,?jr in memory at -
O 4 AM 4 A —’M pointead a ress. , ﬁ
05 |AlY B [: 051 o[c) *o0000se @
06 1> 1 [Yr+4-Yr | } Add 1 to pointer. .]
07 |JumpP| F v - veveees @
= Garry? = Check f _
08 |0 0 ngs v : ceceees [[]
09 (7> 7 NO i No — Return to 04. : 0:=ﬂ4
OA |JUMP| F :
0]= <O» 0 :
0C <4 4 Lol IR 3R o 3R o R o 3 o @

No.28 Load O-F into Memory

This program loads 0 ataddress 50, 1 at 51,2 at 52, ... F at
5F.
PROGRAM FLOWCHART

address | command mgcc)géﬂe C START —~)
00 TIY A 00
01 0> 0 L O--¥r] } Set pointer to address 50.
02 |TiA 8 | w
0 3' <O> 0 [O—Ar] + Give Ar the starting value 0.
04 AM 4 _—_’l % Load value of Ar into mem.-
05 AlA 9 L Ar—M I } grry./ at address pointed to by
06 [<1> 1 | ®
07 AlY B l Ar+ 1->Apr 1)Add1toAr.
08 <> 1 7
09 JUMP = L Yr+ 4 -aYr l y Add 1 to pointer (Yr).
0A <O 0 09
0B (9> 9 “W’ Test for carry:

Yes — STOP.
8C JUMP | F NO YES T Mo retarn o 04
D 1< 0

0E | B 4

A) Key in the program and check it.
B) Start the program by pressing RESET, 1, RUN.

C) Read out addresses 50-5F like this:

*637

Press

&) displays ° e eeeeee
) , XX XXX X
@@ " o000 QO0OES @
= , *T0N0000 @
) " ol el N W 3.
) p rTOenOe e

| J
| ! | |
=) " Sl Rl <R o) EJ
Tk " AR S @

Program No. 28 is the same as 27 except that here Ar
is increased by 1 each time the loop is executed,

No.29 Load F-0 into Memory

This program is similar to the previous one. Here, F is loaded
atb0,E at b1, 0 at BF.

PROGRAM FLOWCHART
address | command | machine C _START)
00 |TIlY A 00
01 <O 0 I o QAP I Set pointer to address 50.
02 TIA 8 I ’ FjAr " 02]) Move F to Ar as starting
03 {F> = 1 value.
> 04
04 AM 4 [AP 1 Load value of Ar at ad-
05 AlA 9 - 1 - % dress pointed to by Yr.
06 > F L ‘N*';IQAF - I } Add F to Ar (subtract 1).
07 ALY B8 ” v Add 1 to Yr ({advance
08 1> 1 [Yrti-yr ” pointer to next address).
09 |uumr| F T | et
C H
0A |<O0» 0 - ves | ves—stop
0B <9 Q No — return to 04.
0]®; JUMP F
0D <O» 0
OE (4> 4
A} Key in the program and check it.
B) Start the program by pressing RESET, 1, RUN.
C) Read out addresses b0-5F like this:

displays o000 0OO
M y XX XXXXx
@@ " o000 OGOGS @

" 60 0000 EFj
e " 000 0

e e

&= p ceveeve |
| ! ' ‘
| I ‘ !
= , cenovon |[]

This time we started with F in Ar and added F to Ar
each time through the loop. Do you remembet why
this reduces Ar by 1? If you don’t,then iook again
at the explanations for programs 18 and 19.

No.30 Decimal Counting in Ascending Order
This program displays.decimal numbers 0, 1, 2, 9, 0,1 A) Key in the program and check it.
etc. at intervals of 0.4 seconds.
" B) Tostart, press RESET, 1, RUN.
PROGRAM FLOWCHART ’
address | command| Machine - C) This is how the display on the HEX. LED should
00 [TIA 8 appear:
01 [<3 3 L
. /] 7 _
ST e --@aoa —
0z fon | 2 S g 0 0.0 o o
o A 1 T _® M . A) Prior to this program, when 7 has been added to Ar
05 | AO 1 L 1—iAr] Gae 1 to Ar as starting and this has resulted in a carry, we have taken special
06 [CH 2 i 05 . action. But in this program we go straight back to the
Display value of .
07 [CAL £ L Ar—op | gpey velue of Aron HEX start of the loop as though everything was perfect.
08 TIMR C — ,‘_;Mis‘_ % It is really, but that is by accident. Try adding 7 to
09 CH 2 i Yt‘;ZZr Get timer value from Br and bmary 9
0A Al A 9 l p start timer (store count at 9. 1001
08 75 - i AL TR | the same time). +7 ... 0111
oc |JumP| F 3 o = (1) 0000
0D <O> 0 ArZBr Get count back from Br . . .
oY (also store timer value). Aithough there was a carry, the important point is
OE |5 5 - that Ar now has O in it —and that is the decimal
OF JAIA 9 number we want after 9.
10 <A A
1 |loume| F fja 7 to Ar and check for Adding 7 to any of the numbers O — 8 does NOT
192 Yes — return to 05. give a carry, so the program adds A to Ar — refer to
<O 0 No — add A to Ar. . .
13 <5 5 Program No.15 to review this process.
1"
Return to 05.

No.31 Decimal Counting in Descending Order

This program counts in decimal, in descending order continuously until you stop it.

A) Key in the program and check it.

B) To start press RESET, 1, RUN.

C) Press and release any number key to start the display:

9 8 ----l4

Yes — wait,
No — go to 14.

g 9 8

] B

ArZBr

1 Check for key held:

YrZr

1C

| Get count from
! Br again.

‘ Deduct 1.

| {Yr = 0 goes
! back to Zr}

S y o Test for carry:
5 B
r:B, Get count from Br Yes — return
ye2zr || &display. to 15.
] T i No —set count
0 1 (Yr =0 goes back to 1 to 9, return to
L___L]._D___‘I Zr again) 15.
i 16
. A,r‘fBr | Store count in Br,
Yool ovepze <7 || oget Yr =0 again.
17
1 Get timer value
from address 50.
ﬂ CAL TIVR i [Start timer.
l 1A Store timer value at
I Ar—M } 50 again.
| 18

PROGRAM
address |command | machine address |command | machine

00 [TIA 8 10 |<F F

01 (3> 3 1& JUMP F

02 TIY A TF 1<K 1

03 <O> 0 20 (B 5

04 AM 4 21 TIA 8

05 CH 2 22 (9> 9

06 TIA 8 23 JUMP =

07 (9> 9 24 141 1

08 CH 2 25 <5 5

09 KA 0

0A | JUMP F FLOWCHART

oB | 0 _ START.

0C |<9 9 =],

00 KA 0 I | Set timer value at

0F |uumey F R or a1 a0aress 50
w | SetYr=0.

10 <4 a [T arsm]

11 |{oump| F i e |

10 0> 0 1;252:) } ;trc.)re value of Yr in

13 <> D ' 1 — 66

14 | CH 2 [o=ar]]

16 CH 2 ArZBr store in Br.

17 MA 5

18 JoAL | E No'— wait.

19 TIMR C ;(tzg — go to next

1A | AM 4 '

18 | CH 2

1C |ATA 9

66

r]

No.32 Hex Addition (1) — One Digit + One Digit = One Digit

This program takes a figure from 50, another from 51, adds
them together and displays the result on the HEX. LED.

PROGRAM FLOWCHART . -

address |command | machine C sTART D) YOl display ——--neveeee

00 |TI1v A w0 address b0 >
N e) (g’?@ "
01 0> 0 l o er 02” Move contents of address 50 R L B
02 [MA 5 | oA _ —
03 |TIv A l el I RS HONOe e i%
04 l o address 51[-
05 </’+> 2_3 l 1—in I‘ Add contents of address 51 l (@=0) ” to N BRI W JEoN frPW’
M % i to Ar. Put result in Ar.) L]
06 [AO 1 L M+Alr~Ar |
06 .

07 | JUMP i [Ar—0p]| Display result (contents of <) Start the program by pressing RESET, 1, RUN.
08 [0] o i Ar} on HEX. LED.
09 |[7» 7 ‘ D) The answer is displayed on the HEX. LED.

3+4:@]

A) Key in the program and check it. address 5TO 5T1

B) Before running the program, load into 50/51 the values to

If the result is a 2-digit number, this program only
be added. shows the last digit of the sum on the HEX. LED.
For example, put 3 in 50 and 4 in 51 like this: Example:
i 9+9=12 -

ey displays — — — — — - o000 O0OGS [[Q} Display shows {Eﬂ

WS —- - ecscccce &

u@ - -- 0000000 {BJ

o S v @ 0000 {}?:

No0.33 Hex Addition (2) — One Digit + One Digit = Two Digits

; in Program No. 32 we displayed a 1-digit sum. In 33 we are
being more ambitious and will produce a 2-digit sum, which
makes the programming a bit more complicated. The first digit
of the aniswer is stored at b2 and the second at 53.

| PROGRAM FLOWCHART
b address | cornmand | machine C _START)
00 TIY A 00
01 [<@ 2 l 2-vr]|
02 J LA 8 l 2 Load O at address 52 (first
oa at a s i
" 8 ?1 i\ol\; 2 I OIAr I digit of answer).
} 04
| 05 |TIY A L ~Ar—M]
i 06 |<O» 0 |
07 |MA 5 | oy 1]
- , 08 TIY A 1 o i\goxei contents of address 50
| 09 |1 1 | M—Ar] '
OA M+ 6 1 08
j 0B JUMP F I Ay I Add contents of address 51
i 0C 1> 1 l DA | to Ar (= contents of address
I, oD 4> 4 L M*EAr—Ar I 50). Put result into Ar.
| OE |[T1IvY A 0B |
i OF (3> 3 ‘W‘ Test for carry: l 1
’ 10 AM 4 NO Y(SEES mes - gott0n1e£)1(.t ste ' Arzsr l If carry: _ -
11 JUMP F [- l 0—goto p. Yoz | ?rt\oé?,Ar (= result of addition) ’
12 1> 1 1 10 | Put value of Ar into address 1 15
13 D 1 l ey] Sr?d(gjs%:gnd digit of answer) [avr |
14 H — '
15 g Y i " (The first digit of the answer f 1 —{Z\r S 1‘3 Put 1 into address pointed to by
{52) was set to O at 04 so i Yr (=51 = first digit of answer).
i 16 27 2 if there was no carry no 1 19
] 17 TIA 8 further action is needed.) I SArEsMY o j
{ 18 <1 1 | A
it 1 2 él\},{‘{ g ,\A;r‘:,z?r O } Restore result 6f addition to Ar.
‘ 18 |JUmMP| F 8
1C [<O» 0
1D (ED E Return to OE.

R

A) Key in the program and check it. Tin Ar is the correct answer for the last digit despite the carry,
SO it is stored in address 53 at OE just as it would have been
B) Load into 50 & 51 the figures to be added: had there been no carry.

For example, 8+ 9,

Here i P i ;
C) Start the program by pressing RESET, 1, RUN. ere isa MEMORY MAP for this program

D) The program puts the answer into addresses 52 & 53 address. 50 51 52 53

which should be recalled as shown below. The answer is -

; : : +a=_ T] — 2 digit
displayed one digit at a time. It is a hex number: — 1 (first © 91
digit) 1 (second digit). (11 hex = 17 decimal = 8 + 9).

displays oo ooooe @

M " ®oe0eooooe [5]
IS ’ eeoeocoo

=) " (e B W . O/—> @
Value of memory 52—

e " OO O i f/» @
Value of memory 53

Is it so complicated? |f the addition at 08 gives a carry, a 1 is
carried over into the first digit of the answer. In the example
given, the addition leaves 1 in Ar.

No.34 Hex to Decimal Conversion (A — F)

This program converts hex numbers to decimal. At this mo-

ment we are confining ourselves to A-F.
PROGRAM FLOWCHART .
address | command | machine C START) E=s=n) displays o00OQ0OGOGS
00 [Trvy A ! i
01 1> 1 l I i l g@ ”
02 |TIA 8 I = lA % | Load 1 into 51 (= first digit
03 1 1 Lk l P 04] ?;rax_s;v)e:r — will always be 1 g M o000 O0OEO®
04 | AM 4 Y] -
05 |Tiv | A | = : ceceeec| [
06 <0y O l o l Get a hex number {A-F)
07 MA 5 l Y { $rom address 50. E) " OO e j
08 |alA 9 I M-‘[Ar | This can be 0-5.
08
09 <6 6 | Ar+B-Ar || Add 6 to Ar (convert to fn this case it is O because A = 10 in decimal.
OA TIY A l oA | decimal).
0B | 2 [Deavr] The value at address 50 is increased by 6. If you try
0Cc | Am 4] 0C ’ Load contents of Ar at 52 adding binary 6 to binary F the answer is b with a
00 luuvel ¢ | Ar—M 1 §Fi;icgg?t ot o answer)- carry — but the carry is ignored in this program. As
0E oo | 00-04) you know from previous programs, you reduce 6 to
or 28; 8 | ’ 5 by adding F. ,
address 50 51 52
A) Key in the program and check it. O-L_T1]
A~F ~ 2-digit decimal answer
B) Key into 50 the number to be converted:
Example:
@ {4@'@ @la \ﬁ@ 22@ ‘:‘A@

C) Start the program by pressing RESET, 1, RUN.

Check that the number has been converted, as follows;

No.35 Hex to Decimal Conversion (O — F)

This is an extension bf Program No. 34. This time we allow any number (0-F) to be keyed in. The program has to distin-
guish between 0-9 input and A-F input, in order to decide whether the first digit of the answer should be O or 1. The
answer goes into 50/51,

PROGRAM FLOWCHART A) Key in the program and check it.

address | command | machine (. START 7))
00 |T1v A ’ 1 00 B) Press RESET, 2, RUN to start the program. (Note
01 <O 0 L O-ivr] | the mode.)
2 T 02 g

83 <O>A g [o-ar l ‘ 'c;i‘;?foe :;sav‘jg;f’ss S0(=fist C) Pressa key for the value you want to convert.
8é AM 4 [Arl - % D) Check the answer like this:—

KA 0 i _
06 [JUMP F Key input: == displays o000 0®0OO @
07 <O 0] ! No key pressed — walt.
08 (5> 5 i Key pressed — go to next W 5
00 |Tiv A step. IS L NN 9
on | 1 1 I

M keyed in val d- o " o000 OQGOGS
08 v | 4 | o goved in e g0 o B
0C AlA 9 , answer), _
0D |6 6 : = creceeee: (7
OB | JUMP F CanbeOor1 -
oF N 1 Add 6 to Ar, test for carry: = d OO0 @ F
10 [4 No — STOP (input = 0-9). Canbe 0—9-
11 JUMP = ! Yes — go to next step (input . 7 .
10 =A-F). The test for acarry is at 0C-10. It distinguishes 0-9
’ <1 1 from A-F, The program has two different ends, 11
[! [, !f e - move contents of and 1A. Since you started it with RESET, 2, RUN
15 i . ‘ | A 7 | 6xgr ;gosgﬁress rive=Ta check the binary LEDs (at step C above) to see
16 <TOI>Y é | O=Yr] where it stopped — 11 if no carry, or 1A if carry.
17 [Tia 8 | | _ Valueofkey _ 50 51
R LT I s ot T prosed (0F) 1]
19 \' Va .
2 2 ﬁ,\JMP é [Ar—m | Converted to 2-digit decimal number
1A

1 (Ei 2;5 2\ ’: Press RESET, 2, RUN each time you want to change

71 — the value you wish to convert, [

' No.36 Decimal Addition — One Digit + One Digit = Two Digits
This program adds two decimal digits (0-9) (from 50/51) and puts the answer in 52/53.
PROGRAM FLOWCHART
address |command | machine (C__sTART) A) Key in the program and check it.
00 TIY A 00
8; <T2I>A g | 2-nyr | B) Load two DECIMAL numbers at 50/51.
03 <o 0 | O}M °2| Move 0 into 52 (= first digit For example W3l elo)] 18 18
04 AM a > : of answer). 7+6=7
05 [T1IY A = '
06 <o 0 [AFIM] C) Press RESET, 2, RUN to start the program..
07 | MA 5 0 , .
08 TIY A l O—Yr (Fesen) d|sp|ays o000 0O0O @]
0% 1> 1 l . 1 Xove value stored at 50 into -
0A |m+ 6 s WS eccccoe
0B JUMP F l ® |
0C <1 1 I e 1
0D (<o 9 « | Add value stored at 51 into L'@ ! 000000
Ok TIY A l 0A ’ Ar, put answer in Ar. :
OF |[¢3> 3 _Mrac—ar | e coeveexe - | |
10 AM 4 08 ‘ Test for carry: = !
11 AlA e W [Yes —go to 19. ! =
12 |y 6 o YOEES | No — go to next step. = " Lo - N IR o ‘»
13 | JUMP F | B] o Answer = 2 digits-
14 1> 1 ['1f no carry, put result of]—l
15 <D> D l 10 | addition into 53 (= second y &
Ar—m S I Ar+6-+Ar I } If carry at OA — add 6 to Ar
j’ g ZJqL;MP if|: | T Ml digit of answer). i I DECAL convorsion.)
18 6> 6 | Ar+6—Ar | 1 Add 6 to Ar, test for carry: [Boyr] [v
19 Al A 9 13 ’ f\\(lo - STOtP'1D l 1D | Move decimal-converted result to 53.
1A <6 6 st P [[Ar—M H
1B | TIY A | 1 1E
1C (3> 3 NO (first digit is dealt with at l paRv—]
10 | An 4 00-04, last digit at OE-10). T
. . _) 2
1 E <T2|>Y fg Study _the logic. Carrlqs of two different kinds | 1 AT]| Move 1 to 52 (= first digit of
20 |Tia 8 can arise. At OA it is a hex carry. that is, 1 5 | answer) and STOP.
21 1> 1 answer greater than F. At 12 it is a decimal | Ar—M]
22 AM 4 carry that is, answer greater than 9. In both 23
gi ZJ2L§MP g cases the first digit of the answer is 1. |
25 (3> 3

No.37 Hex Subtraction with Decimal Conversion — One Digit Minus One Digit

One hex number (b1) is subtracted from another (50} and the answer is decimal-converted and put in 52/53.

AM FLOWCHART _ ,
addressPRCOOmG”Snd maohine CESTRRT) A) Key in the program and check it.
o T o i g B) Load hex numbers into 50 and 51,
01 (2> > | ST K (50 MUST be greater than 51)
02 TIA 8 ! 0 ‘ Move © 16 52 (= firet diait Example:
> ove (o] = Trs 1gl 3
82 ZOAZ 2 L© 1” OJ of answer), ? = W3] 0] @ 0 & Mg &
05" | TIY A L Arem | C) Press RESET, 2, RUN to start the program.
06 <D 1 I ! 05! Read out answers like this:—
1-Yr — o r—
CO); ,_]{1'?‘\(i l o/l‘ Move contents of 51 to Ar. ey T T LA [H}
| M—Ar | _
09 |« 0 T - e sccccece [
OA M- 7 i O—Yr | .) :
i Sub t tent: r
gg <T3I>Y é r l 0/\”‘ erém:raSCO; ;L?tnaenr;v?/eroin Ar. LI@ ,,,,,,,,, PP S PGP PP
M~ Ar—Ar ’
00 AM 4 1 8 . . ;
0E [A1A 9 5w] @5 - veveeve - | [
OF 6> S l 90 { Put answer in 53. -
10 | JUMP F | Ar—M J/ GE —————— - OO @ - U]
11 <D 1) 0 answer =
12 (6> 6 L Ar+E—AC | Add 6 to Ar, test for carry: Decimal conversion is made at OE-12 where 6 is
13 JUMP F Y1 1f No — STOP (first digit added to Ar and the answer tested for carries.
1 4 </] > /] w i dEEII with at 00-04, second Here |S the memory map__
15 (3> 3 YES o ‘: at 08-0D), if Yes — go to 16. address 50 51 52 53
16 AM 4 _ [
17 TIY A 16 | If carry — put answer in 53 O-A *[7_,_,3
18 (2> 2 I AFIM 17] + lalready pointed to at 08). hex The answer is a
18 [TIA 8 | vy | 2-digit decimal
1A «p 1 T " number.
Put 1 in 52 (= first digit of
1 2 ﬁr\L/JMP é l 1*‘1’/“ l } aerjstwer];nlast digit“g}aal‘:g\'/f/i?h
13 | at 16).
10 [<» 1 v]
|
1E C C p a3

No.38 Hex Addition with Decimal Conversion— One Digit + One Digit = Two Digits

This program adds two hex numbers together and converts the answer to decimal.

PROGRAM
address |command | machine address |command [machine
00 |Ti1Y A 27 <2 2
0" 2> 2 28 | TIA 8
02 |Tina 8 29 | <1 1
03 |<o» 0 2A | AM 4
04 | Am 4 2B | yumpP F
05 T1Y A 2C | <2 2
06 | 0 2D | < £
07 |mMA 5 2E | AM 4
08 |Tivy A 2F jT1Y A
09 <1 1 30 <2 2
0A |m+ 6 31 TIA 8
0B | JumMmpP F 32 <2 2
ocC <> 1 33 | AM 4
oD | 9 34 | JUMP F
)= TIY A 35 <43 3
OF |3 3 36 <4 4
10 AM 4 37 |AILA S
11 AlA] 38 <6 6
12 e 6 38 | AM 4
13 JUMP F 3A {AILA 9
14 12> 2 3B |6 6
15 <0 0 3C | JuMP F
16 JUMP = 3D <4 4
17 1< 1 3 |2 2
18 [<6> 6 3F [JUMP F
19 TIY A 40 [2
1A (3 3 41 < F
(=T V- 9 42 | AM 4
1C |6 6 43 | Tiy A
10 | uumP = 44 <2 2
16 |3 3 5 | TIA 8
(A kY2 7 46 (<3 3
20 | AM 4 47 | AM 4
21 Al A 9 48 | JUMP ~
22 | 6 49 < 4
23 | JUMP F 4A <8 8
24 <2 2
25 <> =
26 | T1Y A

HEX TO DECIMAL CONVERSION

hex — decimal hex — decimal
- 9 - 0~ 9 14-19 » 20-~-295
A- F—-10-15 1TA-1D — 26-29
10-13 - 16~-19 1TE - 30

A) Key in the program and check it.

B) Load into B0/51 the two numbers to be added. For exam-
ple, try putting 8 in b0 and 9 in 51.

e M) o] @ 40 @ lo &

C) Press RESET, 2, RUN to start the program.
Now press the keys: —

G= ——-—————— eeococo0o0o0 @]

Ws) ——-—-—-————- N NN NN E}
TI@ -~ 9000000 @

@g;@ _________ “ @ I @@ @ ‘> L UUJ
D - U @ T @@ D L—' [7[
answer = o

¢ WATCH THIS ONE! Examine the flowchart very carefully.

address 50 51 52 53

O+a=[_ [

hex The answer is a decimal number.

774*

e e R o 5

~ 1 The numbers in the boxes are the answers in hex that

are dealt with by that particular part of the program.

37
Ar+6A :
[r+e-Ar —] | Add 6 to Ar, store result in
39 | 53 (last digit).
i Ar—m 1!

| 34

Ar+B—Ar 1K

| Add 6 to Ar, test for carry:

FLOWCHART
1 19
(START) I Syr l If hex carry at OA, point
oG 1 11 to address 53.
18
I_ 2vr —] | I A OAr . Add 6 to Ar, test for
1 ol AT | I decimal carry:
[O—Ar] First move O into 52 (= 1D | Yes—go to 37.
| first digit of answer). ‘W | No — next step.
! l 0l YES
L yuny "] ! ———————>| NO 20
g |
1 [: Ar--M l 1 Store value Ar in 53.
05 i
L O-—Yr 1 i 1 2
l 7 ‘ Move hex value of 50 into I Ar+BAC ' i Add 6| to Ar, test for
! Ar. 23 decimal carry:
[M-—Ar l ; [Yes — go to 2E.
1 0| ES " No — next step.
[=]| Add value of 51 into Ar; 2
| e an ri I 2-Yr]
1 9A stor swer in Ar. - l If no carry at 23, move 1
— 28 to 52 (first digit)} and
L Mrar—ar] T] || STOP (ast digit dealt with
08 | at 20).
w [Test for hex carry: 1 2A
VeS| Yes—goto 19, ArsM o T R(C10-13
NO 0 No — go to next step. l‘ = “] ! LAh;x_‘J M
r 3—vr] 8
l . 1f no carry:
| store answer in 53,
l Ar—M] | oe If no carry at 23, store
l, 11 7 | contents Ar at 53 (last
vy _ ArM | | digiv).
[+ r I i Test for decimal carry: pye 1
' Yes — go to 20. e
[;fo_ 391908_ [DY “l Move 2 to 52 (first digit)
carry? i | & STOP. (last digit dealt
YES ‘ L 1 31| with at 2E or 39).
2-3Ar i
{
NO ‘ - 4 & 1
(First digit dealt with at T (e 1o Jal 12 10]
00-04, second at OE-10). [A hex

hex

3

33\
]|
|

4

2 |
€ Vs — go to 42.
W | No — go to 2F.
NO YES
42
[YNy] If carry at 3C, store second
+ digitin 53.
! 03
L 2-+Yr 1 ' Move 3 10 52 (first digit)
I | & STOP. (second digit
l 3 Ar ‘ dealt with at 42).
I o | [IE]hex
| Ar-—sM 1 |
—
48

*** Program No. 38 is the most difficult, so far. Turn to the

-75

Appendix for some examples to help you to understand it.

No.39 Hex Multiplication — One Digit X One Digit = Two Digits

Computers multiply by repeated addition. For example, the answer to b x 6 can be obtained by adding 6 five times.
| . . . - .
r; This program adds the contents of 51 the number of times contained in 50 and puts the answer in 52/53.
PROGRAM FLOWCHART
address |command | machine address [command [maShine C _sTART) —l 5 it carry ot
00 TIY A 26 MA 5 00 ArZBr { OE — store
01 (2> 2 27 AlA 9 [2-yr | Yrooze] contents
02 TIA 8 28 <15 1 1 w 1 e of Arin Br.
03 [0 29 | AM 4 | Y] l e I
04 AM 4 2A JUMP F l Move O l i
05 |TIY A 2B | 0 [TR S5 ionore | | oy 1 | Add value
06 [3 Zlo K& C re for 2 r as3to
07 | AM 4 ! % |answer). ! 14 | value at 51;
08 |TIv A [BT] | Tt] | store result
09 [<0> 0 T ” T =
OA [MA 5 [Ar—M] [m+rarsar]
oB CH 2 l %
1C
0 S | o |
0E [P F | b4 | multiplied NO 16 | hex carry:
OF JUMP = I M—Ar ’ into Ar. | Ar—M I { 10 23. 9
10 <1 1 l, 0B ! No — store
11 (5> 5 Ar—Br Save cofn- | answer at
12 |uve | E S oo 9ot
14 (2> 2 p J’, . Move value
15 CH 2 ArZBr | I stored in
1 6 TIY A yrzr.... .| I Brback 2 s
17 <1 1 | o oAn | Ar—M |
18 |[MA 5 [ar+e=ar "]| AddF to ! 2 | If hex
Ar, test B RRv carry at
1 2 2_3|>Y g YES OF | for carry: I Ll I 1B — add
W Yes — go l 26 | 11052
12 || ST | e
o— igit o
1D (2> 2 2 STOP. I l 27] answer);
1E (3> 3 P # Ar+1—Ar Bcagurn to
; g ﬁ,\L/JMP é # (0+F — no carry) l Ar{»M v 29]
2 <O> @) T
22 C> C
23 AM 4
24 TIY A
25 (2> 2 ~-76—

A) Key in the programrand check it.

B) Load a hex number into both 50 and 51; the answer will
be in 52/53.

Example:
3x8=[_]
EEEEE M e,
&= M5] /0] 0l g

C) Press RESET, 2, RUN to start the program.

D) Get the answer displayed in hex:

displays o000O0OGOS

A
] " o000 OGOGOS
10 y XXX
" OO0 O
o , "O O @

answer = —-!

Remember — Your answer will be in HEX. 18 hex = 24 decimal.

_77A

¢ The program first clears 52 and b3 (sets them to zero). The
contents of 51 are added to 53 (with carries to 52 if needed)
and at the same time the value of 50 is reduced by 1. The
program stops when the value of b0 reaches O.

address 50 51 52 53
Oxa =T 7]
~ Two digits
For example:
50 51 b2 b3
Step 1 3 8 0 0
Step 2 2 8 0 0+8=8
Step 3 1 8 1 0 (8+8=10;
carry to 52)
Step 4 0 8 1 8 (10+8=18;
carry to b2)

Program stops.

No0.40 Decimal Multiplication
This program multiplies the value of 50 by the value of 51,
like program 39. But here the result is converted to decimal
before storing in 52/53.
PROGRAM FLOWCHART
address |command| machine address |command | machine C _START_ D) 1 "
00 [Tivy A 1¢c [JumP| F RE: ArTBr
01 (2> 2 10 |<2> 2 | 2ovr | g Yrotzr
02 |Ti1A 8 18 |8 8 | Z oS ! 1
03 |« 0 16 | AM 4 | = 2] T |
04 |AM 4 20 [AIA 9 —] |]
05 |[T1Y A 21 <6 6 1 5 | & 1 I
06 |3 3 22 fuumP| i s) | S 3oyt] i | 2a
07 |AM 4 23 | o ol —1 v |2 | T Sl—arev |
og |[Tiv | & 24 <A A3 | ERSRT-CV S) S LEU e —,—,
09 |« 0 26 |oumP| F 3| Oiw i e 3 T —
OA [MA 5 26 [0 g T ” NO e g1l M—Ar]
0B |[CH 2 27 <& c E|[wa] L Acv]| Routine | > | =
0C |CH 2 28 |[AIA g <] 1 # conver | g (L Areimac]
oD Al A o 29 6> 6 <§(A;;:i: = l Are6—ar . || sion. g l AriM 30]
0E |<F> F 2A | AM 4 0= S o
OF |uumpP| F 28 | Ty A et | NO
10 <D 1 2C [2 yezze] 2 | Program
11 <5 5 2D | MA 5 ‘ 0 [Arve-ac] 3019~ ,
12 luumP| F 2E |AIA 9 [areeoar o] * same logic.
13 <15 1 2F " 1 GFYES
14 |2 2 30 |AM 4 s
15 |CH 2 31 |JUMP| F
16 {TIY A 32 {<O» 0
17 <1 1 33 [C
18 [MA 5
19 |[Tiy A
1A |3 3
18 M+ 6

D

A) Key in the program and check it.

B) Load DECIMAL figures into 50/51.
Try 4 x 6 for example:—

C) Press RESET, 2, RUN to start the program.

D) == ",ﬂ Ll@ =) [E‘ i) Fﬂ This is the answer you should
get on the HEX. LED when you press the keys shown.

Almost all of the program consists of sections taken out of
previous programs (36, 39) — see remarks within flowchart.

Address 50 Address 51Address b2 Address 53
C 1 x 53 = [[1
first second

digit digit

The program contains a routine for decimal conversion which
comes from program 36, 10-1A.

No.41 Decimal Subtraction — One Digit Minus One Digit

In this program the decimal contents of 51 are subtracted
from 50 and the answer put into 52.

f -
PROGRAM FLOWCHART D) The answer can be read from 52
address |command | Mmachine (__START) FeseT displays o000 OOGO

00 TIY A 00

01 <1 1 L v | M 5

0o MA 5 1 0 Move contents of 51 to Ar. & ! o000 000

| M—AP] .
I
8?1 <TOI>Y ; I - i : XXX
[Ovr I‘ Subtract contents of Ar
05 M- 7 l 05 | from contents of 50, store " o3 el W ol) !——»
o6 |[Tiv A [M”’Y”N | resltinAr answer =
06
Tl ==
| ® |

089 JUMP F l Ar—M I { Move answer to 52. address 50 o 02

oA | 0 % | O-s=0]

OB <9 9 STOP
A) Key in the program and check it.
B) Put DECIMAL figures into 50/51. 50 MUST be larger.

Example:9—6=__|
= 49 b @ I3 = i)

C) Press RESET, 2, RUN to start the program.

No.42 Division — One Digit Divided by One Digit

Division can be performed by repeated subtractions. To obtain the answer to 8 + 2 we can subtract 2 from 8, four times. If
there is a “remainder”’, this is discarded. In this program the divisor (51) is subtracted from the dividend (50) repeatedly
until the overfiow occurs, i.e. the divisor will not go into the dividend any more.

PROGRAM A) Key in the program and check it..
address | command "nggg”e . .
5o TT1v A B) Load figures into 50/561, 51 MUST NOT be zero and 50
01 (25) must be greater than 51.
02 |TIA 8 . .
03 |<o 0 = #0] 0] Jo] & Jo] & e+3=[]
’ 8é #’\‘/‘Y 2 C) Press RESET, 2, RUN to start the program.
06 <O 0 .
07 [MA 5 D) = displays
08 |CH 2 »
09 |TIY A] ’ [5}
oA <1 1 '
oB |MA 5 Ti]
oc |Tiv A €o ’ @
0D <O 0 - -
0E M- 7 — ‘ &
OF | JUMP F answer =~
10 [<1> 1
11 Co C
12 AM 4
15 Ty A address 50 51 52
14 | 2 O+a =[]
15 MA S .
16 ALA o The DIVIDEND is the number to be divided = contents
17 Lo) of 50. The DIVISOR is doing the dividing = contents of
18 | AMm 4 o1. .
19 JUMP = Y_oy' have probably noticed that multiplication and
1a | 0 d|y|S|on take quite a long time — you can HEAR the
18 @ 9 micro working. This is because the program has to go
1C | CH 2 through the loop several times.
10 | AM 4 If the division is not possible — i.e. the divisor is larger
T8 | JUMP F than the dividend — the HEX. LED will show *‘0."
1 <D { 81
20 |<E> E

FLOWCHART

(_START_)

| 21]
l 02 | Clear 62
l Qs AP I (= store
l " for answer).
[Ar-eM I
] %
| Q-vr]
: 2 | Sividend
ividen
l M—iAr' I » from 50
08 | to Ar.
ArZBr store in Br.
Yr22Zr
03 l
Subtract
L ad i | v:luer?)i - L
| 05 | Ar divi | Ar—M |
- ! sor) from
{ M lAr OCI . 50, put l ij 13]
{ answer in
[O—Yr CATr. l 15
1 0E) ggerflow L M—Ar |
I M—Ar—Ar] "o 516 go l 16
No — go I Ar+ T Ar 1
;)egext l 18
: | Ar—rM]
R

.

If overflow at OE — move
value stored in Br back to
Ar, store in 50 (this restores
dividend to original value)

and STOP.

After a successful
subtraction (no
overflow) add 1 to
52, return to 09
(52 counts number
of successful divi-
sions).

(3) Group 3 Commands

There are nine instructiohs in this group.

They are: CY, CIA, CIY, CAL RSTO, CAL SETR, CAL
RSTR, CAL CMPL, CAL DSPR, CAL SHTS.

Each one will be introduced and explained by means of
programs.

»EECWTJEEQQEJ command name fLmach[ne code command name
Tst digit 2nd 1st digit 2nd | B
E O | CALRSTO | E | 8 | CAL ERRS
E 17 I CALSETR | E | 9 CAL SHTS
E . 2 CALRSTR | E A | CAL LONS
E | 3 | NOTUSED | E | B | CAL SUND
E 4 CALCMPL | E C | CAL TIMR
E 5 | CALCHNG | € | D CAL DSPR
E | 68 | CALSIFT | € | E | CAL DEM-
E | 7 | CALENDS | E | F | CAL DEM~+

The CAL command is executed when the FLAG is 1, but not

when it is O — just like JUMP.

ClY COMMAND

This command compares the value of Yr with the value following
the command. If the two values are the same, the FLLAG is set to
0. If they are different the FLAG is set to 1. There is an example
of what it looks like on the next page.

CAL SETR COMMAND

This command lights up the binary LED pointed to by the value
of ¥Yr. Yr is loaded with the required value before CAL SETR is
executed. Yr may have any of the values 0-6 (the. binary LEDs
are numbered 0-6 below each LED).

No.43 Use of CIY and CAL SETR

In this program, binary LEDs are turned on from left to right

and remain lighted.

code

, PROGRAM

ji address | command [machine

| 00 TIA

1 01 <5
02 TIY
03 |<6>
04 [CAL
05 SETR
06 [CAL
07 TIMR
08 AlY
09 [P
OA JCI1Y
0B <>
oC | JUMP
oD | <O»
OE <4
OF JUMP
10 <0>
11 F>

momMeeo TMOMODOM-=MO > O ®

FLOWCHART
(__START)
00
. Set the timer value to 0.6
I 5 lAr 1} seconds. e o
02
[" B-2YT....) I} Point to the LH binary LED
l ©(6).

[causetm

04
1 1 Light the binary LED point-
} ed to by Yr.

[cAC TR

06
1 } Start the timer.
08

NO

| ovrdF-yr] } Deduct 1 from Yr*.
A | Testif Yr # F.
YES } If No, STOP (O+F=F; LED O

has just been lighted).
| 1f Yes, return to 04.

* Deduct 1 from Yr (and so
point to the next LED to
the right).

A) Key in the program and check it.

B) Press RESET, 1, RUN to start the program.

binary LED
Yr points to 0000000
required LED [6 54 32 1 0]
number
LEDs light up

in this direction.

The CIY test is shown on the flowchart as;—

Yr#n? wheren isany number (0 — F).

In other words, “‘is Yr not-equal ton ? "". If Yris in
fact equal to n, the answer is ““no, Yr is NOT
not-equal to n. It is EQUAL to n”. This is called a
double negative. !

No.44 Use of CAL RSTR

In this program, binary LEDs are turned on and off from right to left.

CAL RSTR COMMAND (CAL/} ReSet port R)

This command calls in a subroutine which turns off the binary LED pointed
to by Yr. It has exactly the opposite effect to CAL SETR, which was explained

under program 43.

PROGRAM
address jcommand mgggéne
00 [TIA 8
01 +[<% 5
02 TIY A
03 <O 0
04 [CAL [
05 SETR 1
06 [CAL E
07 TIMR C
08 Cly D
09 |<6Y 6
0A JUMP =
0B <1 1
0Cc <O 0
0D JUMP F
0OE <O 0
OF D> D
10 {CAL E
11 RSTR 2
12 AlY =]
13 [<1 1
14 CH 2
19 CH 2
16 JUMP F
17 <O 0
18 4> 4

FLOWCHART
(. _START)
0
(- S—AP |}
i ®
—=7—
_—,l o
I cacsetr]|
1 06
I caLTivr I
08
W
YES l
NO J
10
CAL-RSTR. *l}
| 12 |
| Yr+1Yr J
1 14 |
Argr
Yrazr
1 1t ’
Ar2Br
Yr2zZr

06

Set timer value to 5.

Set pointer to RH binary
LED.

Light the LED pointed to by
Yr.

Start the timer.

Test if Yr # 6.

If No — STOP (LED No. 6 is
on).

If Yes — go to 10.

Turn off the LED pointed to
by Yr.

Add 1 to Yr (Yr points to
next LED to the left).

Exchange registers twice (en-
sures that FLAG = 1; other-
wise the following JUMP
might not be executed).

Return to 04.

*854

This program lights up each binary LED in turn,
starting at the right (0). Only one light is on at a
time. At the end, LED 6 is left on.

A) Key in the program and check it.
B) Press RESET, 1, RUN to start the program.

O000000
(6543210

direction of LED lighting

No.45 Use of CAL SHTS

Binary LEDs are lighted one at a time in both directions (with sound effect).

CAL SHTS COMMAND (CALI SHorT Sound)
Each time this command is executed a short sound is generated through port 3. You
will learn more about this command later on. Let’s call it a BLIP.

PROGRAM, FLOWCHART A) Key in the program and check it.
address {command | machine g

00 TIA 8 B) Press RESET, 1 RUN, to start the program.
8; %‘4|>Y 2 i} Sﬁtﬁ timer value to 0.5 sec- ®®O®O®®@® x| EDsare lighted

onas. - . .
03 |<o» 0 | ' ' (G D in both directions.
04 [CAL = E(-':EtDpomter to RH binary
82 g'/i[s g Mok g Before each light is turned on, a short sound is gen-
o7 [SETR] axe a sound. erated. This sound also turns on binary LED 3,
08 [CAL_ = Turn on the pointed LED because in the micro the sound is generated via
09 TIMR C ’ the same port as LED 3.
OA CAL E lis i
og |lgsta| 2 | start timer Re Rs Ra Ra Rz R:i Ro
88 '<L\1 |>Y ? 1} Turn off the pointed LED. o L o ¥ ® e o
OE |CIY D — 0 . . 1
OF |<6) 6 [raa—ve]} pad 1 to pointer {move it This light goes on when the sound is generated.
10 [JumMP = o

Test for Yr # 6. _ . :
1 12 2912 91 l Yes — return to 04, The sound and lighting continue until you stop the
13 [CAL £ I CAL’ v 113[No — go to next step. program by pressing RESET.
14 SHTS 9 - — ’
15 CAL E 1; 18
16 {SETR 1 [oacsem | .
17 CAL - 4 71 Same logic as 04-0A.
18 {TIMR C [cactmr]
19 CAL E 19
1A [RSTR 2 ﬂ CAL RSTR]
1B AlY B 1 5

(FD = - Subtract 1 from pointe
1 CD: ClY D [Yr+Fovr J} {move it righ?). pointer
1€ 0> 0 D ! Test for Yr# 0.
1F JUMP = ~v ! Yes — return to 13.
50 R) YES ; No — return to 04.
| NO

21 (3> 3
22 JUMP =
23 <O> 0
24 < 4 -86-

No.46 Use of CAL RSTO
This program turns the HEX. LED on and off.

CAL RSTO COMMAND (CALI ReSeT port 0)

the values in Ar or Yr.

This command turns off.the HEX. LED. It is not dependent on

PROGRAM - .
address Jcommand | mache address Jcommand | achine A) Key in the program and check it. -
00 |TIY A 1C | JUMP F
01 <1 1 1D <25 2 B) Load hex data into 50 and 51. To cause an error condi-
02 |MA 5 1E <2 2 tion, make the contents of 51 greater than those of 50.
03 |TIY A 1F |uumP| F Example: 8—9=%
da <o 0 20 < 1 o] ey)
05 M- 7 21 <F> F
06 |JUMP| F 22 [CAL E C) Press RESET, 1, RUN to start. [£] will flash on and off.
07 <O 0 23 TIMR C
08 <> D 24 JUMP F The point of this exercise is to make the HEX. LED flash on
08 AO 1 25 [<0> 0 and off when the subtraction command causes an overflow.
OA JUMP F 26 > F
oB 1< 0 If the overflow occurs, E flashes on (AO) and off. (CAL
oC <A A RSTO) ten times.
oD TI1Y A
OE |<O» 0
OF TIA 8
10 [<E E HEX. LED
[AO ! address 51
12 |AlY B S 50
13 1> 1 o - A ® When subtraction is possible,
14 1TIA 8 > the answer is displayed.
15 | 2} ® When subtraction is not possible,
16 CAL = E flashes on and off.
17 [TIMR C
18 [CAL E
19 RSTO 0]
1A Cly D
18 <A A —-87-

FLOWCHART
C START)

00
Lo |
l 0 | Move contents of 51 to Ar.
L wm—ar
|
| O—s¥r . |
l | Subtract contents of Ar
% | from 50; store result in Ar.
| M — Ar—+Ar |
06 Test for overflow:
«‘W’» ' Yes — go to OD.] 0D
o YES I No — go to next step. Iy' T YT | i If overflow at 05 — set Yr
08 - i) to O (= count).
' e I If i Displ — -
‘ ‘ no overflow — Display . ;
g 0A " answer on HEX. LED, STOP. bis s EZAC I
‘ ! 11| Display E on HEX. LED.
| Ar—0p |
i 12
| Yrea—Yr || Add 1toYr.
1 12
[2-Ar J ‘
1 | Set timer value = 03 seconds,
16 | start timer.
[caL TMR]!
l 18 ’
[cALRSTO]} Turn off HEX. LED.
1A
d—. 2 YES AT ! Testif Yr# A
I caLTmr]} Start timer (Ar set previously). NO { 1fno— STOP.
2 1] 1f Yes — go to 22.

No.47 Use of CAL DSPR

In later programs we will need to display 3-digit results. One digit can be displayed on the HEX. LED; two others can be
displayed in binary on the binary LEDs by using CAL DSPR.

PROGRAM

address |command [machine
00 TIY A
01 O 0
02 [|MA 5
03 THY A
04 |<F> F
05 | AM 4
06 T1Y A
07 <1 d
08 |MA 5
09 THY A
0A | <{ED E
0B [AM 4
oC | T1Y A
0D |2 2
0E | MA 5
OF JAO d
10 [CAL E
11 LDSPR D)
12 | JUMP F
13 | <1 1
14 |<2> 2

binary LED

4 218 4 21

1 1

address 50 51

FLOWCHART

(_START)
00

[QYT . I ‘
|

[vear] ‘
! ®

| FepYrii l ’

1 05 ‘

i L AreM]
! %

| e k

} % |

I LM AR l J
| 09

l CE=yroo] ‘

I —)

1 CACoMo]
] 0c

I 20] ’
| 0E

i M=Ar] }
! 0F

| L Ar=0p]

! 1 |

I cacpser],

12 ‘

|

HEX. LED
i
52

Move contents of Ar to 50.

Move contents of Ar to 5F,
in order to display it in the
L.H part of the binary LEDs.

Move contents of 51 to Ar.

Move contents of Ar to 5E,
in order to display it in the
RH part of the binary LEDs.

Move contents of 52 into Ar.

Display contents of Ar on
HEX. LED.

Translate contents of BE and
5F into binary, display them
on binary LEDs:— 5E on
right, 5F on left, then STOP.

*89_

CAL DSPR (CALI DiSPlay on port R)

This command displays the contents of addresses 5E and
5F in binary on the binary LEDs. 5F is displayed on the
first three LEDs. 5E on the next four LEDs.

4 2 1 8 4 2 1

O 000000
Displayable 5E 5F
Values........ . O~7) - —0~F)

A) Key in the program and check it.

B) Load hex numbers into 50/51/62. The program
will be displayed as below.

4 2 1 8 4 2 1 o

1 OO 0000 0Oy F |
| ! |

| o«7max.‘ o - F 0-F !
. address 50 ! }

address 51 iaddress52
[, S JE S e -
Example:

address. 50 (5> . 51 (E> . 52 (7>

&= 8ol «o] @ Ho = ¥g ® ¥o| =

C) Press RESET, 1, RUN to start the program.

4 2 1.8 4 2 1 {?
i" . f,?/ f:‘ el 8 @ 9
5 =

This is the third CALL routine we have tried that
affects the binary LEDs. The other two are CAL
SETR and CAL RSTR.

No.48 Use of CAL CMPL

This program sorts two numbers into ascending order.

FLOWCHART
CAL CMPL COMMAND (CALI CoMPLement) C START_)

This command replaces the value in Ar with its complement. The
w COMPLEMENT of a number is the answer you get if you subtract
. the number from F. NUMBER + COMPLEMENT = F. The follow-
i ing are numbers with their complements:
Ar before-- - 01234567890 ABCDETF
CMPL e

f' ! Move contents of 50 into Ar.

Move complement of Ar into

Ar.
Ar after ... FEDCBA9876543210 I Add contents of 51 to Ar
CMPL | putresultin Ar. .
1 I ;l;est for caéry:
— STOP.*
PROGRAM | oIf ﬁirzgrry — go to next step.
address | command | machine address] command mggglne ‘
00 TIY A 11 D) 1 | Store contents of 51 in Br.
01 0> 0 192 AM 4
| 0z |MA 5 13 | CH 2
| 03 CAL E 14 |T1I1Y A ,
‘ 04 CMPL 4 15 0> 0 | Move contents of 50 to Ar.
05 TIY A 16 AM 4
i
| 06 <12 L 17 |JumMP| F '
! 07 M+ 6 18 <1 1 !
! M f Ar (50
‘ 08 JUMP - o P . ‘ 51o.ve contents of Ar (50) to
| 09 | 0
{ 0OA (8> 8 : Recall old contents of 51
0B MA 5 . from Br.
0C CH 2 Move old contents of 51 to
0D TIY A 50.
OE <O> O
| OF MA 5 * If carry — STOP (complement of Ar (50) is
! 10 Tiy A greater than complement of value in 51; so
. value of 50 must be less than value of 51).

This program is our first attempt at a SORT. It is
based on the principle that if the complement of a
number A is greater than the complement of a num-
ber B then A must be smalter than B.

This program checks the complements of the num-
bers you enter into 50/51 to see which number is
greater. Then it displays the smaller number first.

A) K’ey in the program and check it.

B) Load two numbers into 50 and 51.
Example: 9 in 50, 7 in 51, like this:—

C) Press RESET, 2, RUN to start the program.

D) Read addresses 50 and 51 to check that the

smatler number now comes first:

displays o000 O0OOGS
5 " 0000 OO
O] " NN NN N N
" T e - 0000
) " T @ v 00 @

Notes:

No.49 Use of CIA

This is an unusual kind of program because we load into PROGRAM
memory not only the data, but also the commands. address [command | machme address |command | Machme

00 TIY A 25 M - 7
memory address 01 0> 0 26 JUMP F~
50 = any number 0-9 52 - any number 09 02 MA 5 > 7 (3> 3
b1 = B {minus) B3 = E (=) 03 AlA 9 28 <O» 0
04 (6> 6 29 TIY A
. , ; : 05 |JumpP F A | 4
If the number in b2 is greater than that in 50, E will 06 <3Li 3 gB AM a
flash on and off on the HEX. LED. The same applies if 07 <O 0 o0 AO 1
the values in b1 and b3 are not B and E. Otherwise, the 08 TIY A 2D JUMP =
answer is stored in 54, 09 |1 1 2E <2 2
OA MA 5 2F D> D
oB ClA C 30 TI1Y A
ocC B> B 1 <O> @)
CIA COMMAND (Compare with Ar) QD JUMP F 32 TIA 8
This command compares the contents of Ar with the value 8E 28; 8 gi ;E(; E,lE
following the CIA command. If they are equal, the FLAG is 10 TiY A 35 TIA 8
set to O. If they are not equal, the FLAG issetto 1. 11 (25 2 36 <O> 0
The CAL and JUMP commands are used immediately after 12 MA 5 37 [CAL E
CIA. Whether they are executed or not depends on the setting 13 Al A @) 38 TIMR C
of the FLAG — 1 = execute, 0 = don't execute. 14 6> 6 39 [CAL E
15 JUMP F 3A RSTO 0
command word machine code 16 (3> 3 38 AlY B8
command--- - CIA C 17 <O> 0 3C 1> , 1
TN 18 TIY A 30 CtyYy D
data (e E 19 |3 3 3e | | s
1A MA 5 3F JUMP =
. . 18 ClIA C 40 4> 4
A) Key in the program and check it. 1C (B> = 41 (5 5
1D JUMP = 42 JUMP F~
B) Load some data into 50/51/62/53 for example, 9, B, b, E:— 18 <3 3 43 [<4 i
1F <O> 0 44 (2> 2
=N = I @ Mo @& WD) @ 20 |TIY A 45 | [CAL E
"ol <o) +[o] ¢ 0] ® 21 | 2 46 [TIMR C
(9] [B(=)] [5] [E(=)] [answer] 22 |[MA 5 ‘47 | JUMP| F
23 TIY A 48 (3> 3
C) Press RESET, 2, RUN to start. The program displays: o4 0> 0 49 2> 2

D) The answer 4 should show on the HEX. LED. 92

FLOWCHART

[

Move contents of 50 to Ar.

Add 6 to Ar, test for carry:

Yes — go to 30 { hex num-
ber).

No — go to next step.

' Move contents of 51 1o Ar.

Test for Ar # B:
i Yes — go to 30 (invalid char-
acter).
No — go to next step.

'+ Move contents of 52 to Ar,
add 6 to Ar.

If carry — go to 30 { hex
number).

If no carry — go to next step.

: Move contents of 63 to Ar.

i Test for Ar # E:
Yes — go to 30 {invalid char-
acter).

i

O—Yr:

] | Error routine — move 0 to

1<——| LiY'r (= count).

E—vAr l :

l 34

Ar-—0p |
35
O-s AT
l 3/ 1 onds.
CAL TIVR l | Start timer.

} » |

CAL RSTO

T = |

YEA 1 —eYr

< Yr+5% =

Display £ on HEX. LED.

] Set timer value to 0.1 sec-

| | Turn off HEX. LED.

I | Add 1 to Yr {count number
3D | of times E is displayed).

YES
NO ! No — STOP.

]
| Testfor Yr# 5:
| Yes — go to 45 (repeat loop).

No — go to next step.

Move contents of 52 to Ar.

Subtract contents of Ar
I from 50; put result in Ar.

¢ Test for overflow:
i Yes — go to 30 (deduction
| not possible).

No — go to next step.

If answer 0.K., move to 54
and display on HEX. LED.

i Start the timer.

i Return to 30.

No.50 Use of CY

PROGRAM FLOWCHART
This program compares relative sizes of data in memory address [command [M55 e C START)
and shows the address of memory with the greater num- 00 |TIY A 8
ber on the binary LEDs and the contents of that address 01 | 0 -
I'm f 50 to Ar.
on the HEX LED. O 2 MA 5 ka?l ‘ ove contents o to Ar.
03 CAL E oj
CY COMMAND (exChange contents of Yr with Ar) 04 CMPL 4 [cacowee ‘{ Xf_ve complement of Ar to
Flowchart symbol: [ArcYr This command is 05 | TIY A l I
used to exchange the contents of Yr and Ar. [t is useful 06 <D 1 [1o] | Add contents of 51 to Ar
for transferring the contents of Yr into memory, as in 07 M+ 6 . {complement of 50); put
program number 50. 08 JUMP c i result in Ar.
> | Test f :
09 <O 0 ' Yes— g0 10.0D. *
14 . No — to next step.
OA 0 D \ Degjur:gto 1 frori Yr sets
A) Key in the program and check it. 0B [ATY B pointer to 50.
oC {F> F= | Move contents of pointed
B) Load two numbers into 50 and 51. 0D |MA 5 memory to Ar.
Example; 8 into 50, A into 51. 0e [AO 1 "] Display contents of Ar.
Wi = W . OF CY 3 " .
¢o] ofo] = o] & o) o |Tiv | A A Do S0 e
11 e e l 1(‘ with larger data).
C) Press RESET, 1, RUN to start the program. 15 1 am 4 f TEvr]
1 12 ;‘ Move contents of Ar to BE.
Answer shouldbe:— + @ = @ @ @ = 13 Ty A [AT]|
14 | <F> F 1 13
CY causes the contents of Ar and Yr to be ex- 19 | TIA 8 | Fow]
changed. 16 [5 : ,1 L ‘ Move 5 to 5F.
17 | am 4 ' *5‘?‘" J|
18 [CAL E l] :
19 DSPR) e
TA | JUMP = [CACOSPR] Move contents of 5F to
', higher binary LEDs; move
= <1 1 14 | | value in BE to lower binary
10 leas A ! LEDs, and STOP.

No.51 Turn on Binary LEDs from right to left

This program is similar to no. 43, but it turns on the LEDs
in the opposite direction.

PROGRAM
address |command mggg'e”e
00 TIA 8
01 (5> 5
0g TIY A
03 <O> o)
04 (CAL E
05 |lseTrR| 1
06 {CAL E
Q7 TIMR C
08 AlY B
09 1>]
OA ClY D
0B <7 7
oC JUMP F
0D <O 0
o= <45 4
OF JUMP F
10 <O 0
11 <F> =

Set timer value to 0.6 seconds.

Set pointer to RH binary

— 1" |ep.

CAL SETR o

11 Turn on the LED pointed to
i by VYr.

CAL TIMR

Start timer, add 1 to Yr.

Yt

gy

CTestif Yr£7:
¢ Yes — return to 04,
No — STOP.

A) Key in the program and check it.
B) Press RESET, 1, RUN to start the program.

All the binary LEDs will be turned on one after the
other. {It’s nice to do something easy for a change!)

No.52 Turn on Alternate Binary LEDs from right to left

The LEDs light in alternating sequence from right to left.

PROGRAM FLOWCHART
address [command mggg;”e C START)
00 TIA 8 0
01 <5 5 l BAr] : Set c’;imer value to 0.6
., seconds.
O |11 A L 0—1'Yr JZI | Set pointer to RH LED.
03 | 0 T -
04 [CAL E H CAL SETR] ! Turn on pointed LED.
0b SETR 1 06
06 {CAL E i CAL TIMR | ‘ '
07 TIMR C I 1 oéi ‘ Start timer, add 2 to pointer.
Yr+2—Yr |
08 ALY B ga . Testfor Yr# 8:
09 (2> 2 YES " Yes — return to 04 and re-
! peat loop.
OA [|C Y D NO o oF No— STOP.
0B 8 8
0oC JUMP F
0D <CO> 0
OE 4> 4
OF JUMP F
10 <O O
11 <> F

A) Key in the program and check it.
B) Press RESET, 1, RUN to start the program.

To light only alternate LEDs, the code at 09 is
changed to 2.

No.53 Turn on Alternate Binary LEDs from left to right

The LEDs light from left*to right.

PROGRAM FLOWCHART
address | command| machine (CSTART)
00 TIA 8 00
01 (5> 5 L E—Ar I} set timer value to 06
l 0 seconds.
02 Ty A L 6—Yr j } Set pointer to LH LED.
03, |<6& 6 I "
04 [CAL E [cacsetR]} Turnon LED.
05 SETR 1 1 06
CAL TIMR
06 [CAL E u l 09 Start timer, add E to Yr
subtract two from pointer).
09 (EY E YES oA Test for Yr # E:
| 0 W" | Yes — return to 04 to repeat
. loop.
82 <CE>Y c Y R sy
0oC JUMP F
oD <O 0
OE <4> 4
OF JUMP F
10 <O» O
11 > F

A) Key in the program and check it.
B) Press RESET, 1, RU’N to start the program.

The only difference in this program is that the
pointer (Yr) is reduced by 2 each time round, instead
of being increased by 2 as in program 52 and the
pointer is set to begin at the left-hand LED.

No.54 Turn on Binary LEDs One at a time from left to right

This program lights the LEDs in the opposite direction of A) Key in the program and check it.

program 44,
B) Press RESET, 1, RUN to start the program.
PROGRAM FLOWCHART prog
address [command | machine
00 T1A 8 . 4218421 LEDs are turned on and
01 < 5) e pmer value o 0.8 ~eoeeeee Off one after another
8; <TGl>Y é } Set pointer to LH LED. 65543210 begmnmg at the left.
04 [CAL E :] | Turn on LED pointed to by A small change has made a big difference!
Yr.
05 SETR 1
06 [[CAL | € J Start timer.
07 TIMR C l '\l;est for Yr # O:
- 10.

08 Ccly O J No. _gos%P (LED O has
09 <) 0 been turned on).
OA JUMP F } Turn off pointed LED.
oB <1 1
0C <O 0] }Subtract 1 from pointer
0D JUMP = 14 {move it to right).
OE 0> 0 Return to 04,
OF < D ,
170 [CAL E
11 RSTR 2
12 AlY 8
13 | <P F
14 JUMP F
19 |<O» 0
16 <4 4

No.55 Turn on Binary LEDs One at a time in both directions (1)

The LED:s light at varying speeds until count reaches 16.
The new feature in this program is that the rate of display slows down as the program runs.

PROGRAM
address | command | machine address | command| machine
00 TIA 8 26 1> 1
01 <0> 0 27 6> 6
02 TIY A 28 JUMP F
03 <O> 0 29 <O> 0
04 [CAL E 2A |<4> 4
Y SETR 1
06 [CAL E
07 TIMR C
08 [CAL E
09 RSTR 2
OA Al A 9
oB <1 1
ocC JUMP F
0D < 0
OE | C
OF AlY B
10 1> 1
11 Cly D
12 (6> 6
13 JUMP F
14 <O> 0
15 <4> 4
16 [CAL E
17 SETR 1
18 [CAL E
19 TIMR C
1A [CAL =
18 RSTR 2
1C AlA 9
10 <1 1
1E JUMP F
1F 1> 1
20 <E> E
21 AlY B
22 <F> F
23 Cly O
24 <O> 0
25 JUMP F

A) Key in the program and check it.

B) Press RESET, 1, RUN to start the program.

© 0 O O O O # Right-hand LED is the first to light.

Stops «————

-

The program stops when the timer constant (Ar) has reached
F — when one more is added to it, a carry is generated. The
direction of movement changes twice during the program.

FLOWCHART
~_ _START

00 | Set timer
value to 0.6

seconds.

Set pointer
to RH LED.

Turn pointed
LED on & off
with timer
interval in
between.

Add 1 to Ar
(increase
pause).
Test for

l
!
= l carry:
1
|

Yes —STOP.
No — add 1
to Yr*.

Test for Yr #
6.Yes —**
return to 04.
No —go to
next step.

1A

1C

YES

* Test for carry: Yes — STOP (Ar has reached
16). No — add 1 to Yr (increase pointer value).

** Test for Yr # 6. Yes — return to 04 (repeat
loop).

Turn pointed LED on and
off with timer pause in be-
tween.

Add 1 to Ar, test for carry:
Yes — STOP.
No — go to next step.

Subtract 1 from pointer, test
for Yr# 0.

Yes — return to 16.

No — go to next step.

No.56 Turn on Binary LEDs One at a time in both directions (2)

Number of lighted LED is displayed on the HEX. LED.

PROGRAM
address | command | Machine address | command | machine
00 [T1A 8 17 <Oy 0
01 [« 5 18 <7 7
02 |cH 2 19 [CAL E
03 [Ti1v A 1A | LISETR| 1
04 <O 0 18 | AO 1
05 [TI1A 8 1C |CH 2
06 |<o» 0 10 | [CAL E
07 {CAL E 1E [TIMR C
08 |ISETR| 1 1F | CH 2
09 |[AO 1 20 [CAL E
OA |CH 2 21 |IRSTR 2
0B [CAL E 22 |AIA 9
oC [!TIMR C 23 <P F
0D |[cH 2 24 |ALlY B
0E [CAL E 25 <P F
oF |lRSTR| 2 26 |CIY O
10 |ATA S 27 [<0> 0
11 < 1 28 |JUMP| F
12 ALY B 29 1< 1
13 <D 1 2A <9 9
14 |CIY D 28 [JUMP| F
15 |6 6 2C |<® 0
16 |JUMP| F 20 <70 /

This program displays on the HEX. LED the number (0-6)
of the binary LED currently turned on.

A) Key in the program and check it.
B} Press RESET, 1, RUN to start the program.

Aar—0p | This command displays on the HEX. LED
the number reached on the binary LEDs.

To stop the program, press RESET.

-101 -

FLOWCHART

Timer
value =
0.6
seconds.
Store in
Br.

Set Ar &
YrtoO
(1st LED
to turn
on).

: | Turnon

pointed
binary
LED.
Display

its number
hex.

Get timer
value
from Br.
Start
timer.

Restore
timer
value to
Br. Turn
off binary
LED.

h ;"L‘ilr . ”

Fooovesaoyr o]
YES ; ”

——] N0 g

[cacsem]

1 18

L aroo |
!

COArEBr o

Covrpze

Add 1 to count
and pointer.
test if Yr # 6:
Yes — return
to 07. No — go
to next step
{program has
reached LH
LED).

Turn on
pointed LED,
display its
number on
HEX. LED.

Get timer value
from Br, start
timer; restore
timer value to
Br, turn off
binary LED.

Subtract 1
from count
and pointer,
test for Yr # O.
Yes — return
to 19. No —
return to 07
{program has
reached RH
LED again).

No.57 Turn on Binary LEDs in both directions at once, starting the center

PROGRAM FLOWCHART
address | command [machine address |command | maghine (START ...
00 TIA 8 20 JUMP F~ 00 l‘_/ } Timer value to ‘ 1 16
01 <5 5 21 |<O 0 I G-Ar | /06 seconds. [xr+1i=ve]| MoverH
o2 |Tiv | A 22 |<o» 0 I @ | point to 1t ! 18 | Diacs feft &
03 (3> 3 23 [CAL £ I 3yr binary LED ArEBr store in Zr.
04 |CH 2 24 |ISETR 1 I} w) tolight. yroze
05 |Tiv | A 26 |JumMP| F proer Store timer l . - | ove L+
g lue in Br, — .
06 |3 3 26 |<O 0 T poimerin2r B | place right
07 CH 2 27 7> 7 l Svr] | Reset pointer YES test if # 2.
08 [CAL E 28 [CAL £ T in Y.
09 |lsETR| 1 29 |lrsTR| 2 = %Y | Get timer vaiue T
ArcBr and pointer sg | Turn off
OA [CAL E 2A | CH 2 yeozr from Br/Zr; I cALmstR]/ PontedLH
OB TIMR C 28 CAL E turn on pointed LED.
[J! B | LED, start timer. ‘Ir 2A
0C |AlY B 2C RSTR 2 f cacsetr | ArZ8r Get RH
0D 1> 1 2D CH 2 l A ’f\g?VfF?C'iiEg?f Yreze gointer from
OE |cCH 2 2= [CAL E [oA Tvr] o T % | A LED
OF ALY B 2F TIMR C ! oc | left and store [caLmstR !
10 | F 30 |cH 2 SIS | SSA T o).
LED | :8 et timer
11 |CHY D 31 [JumP| F Arisr g€ | LED one place é;z: e & LH
12 {F> F 32 <> 1 y :z tract), test for - g?n;';g:{ from
13 |Jdume| = 33 | 6 e Ves Jiurn on T o Broswr
14 <2 2 | Ry [cat TR
15 (3> 3 l Yr+F-yr I return to 07. l 30 | Get RH
. . No — go to ArS8 i f
16 A1y B A) Key in the program and check it.| ves ot saop, Y:T_’Z: (%Z'?;izrgotrg
1 ; g:{ ; B) Press RESET, 1, RUN to start. ﬁ NO] e
- The LEDs turn on and off in this 2
16 ALY B sequence. “ CAL SETR l * Move LH pointer one place right, test if # 2;
1A > = | A | If No, return to 00 (start all over again).
1B |Cl1Y D O 00 ® 000 11 ¥es. 0 t0 28 ,
1C (2> 2 on . on If k k of all th i
you can keep track of all that swapping
1 EE) ZJZ%MP ; C P o0 off) you are doing very welll
0
1F (8> 8 The lighting continues until you press RESET.

-102-

This program gives a display which looks like a neon sign —
it shrinks and expands.

PROGRAM
command | machine address |command| Mmachine
TIA 8 19 |[<1> 1
5> 5 1A [CH 2
TIY A 1B ALY B8
<O> 0 1C <P F
CH 2 10 |CIY D
TIY A 1E <F> =
6> 6 1E [JUMP F
[CAL E 20 <2 2
SETR 1 21 <5> 5
CH 2 22 | JUMP F
[CAL E 23 |<0> 0]
SETR 1 24 <O o)
[CAL E 25 [CAL E
TIMR C 26 RSTR 2
ALY B 27 |CH 2
<1 1 28 [CAI_ E
10 |CH 2 29 RSTR 2
11 ALY B 2A | CH 2
12 | F 2B [CAL E
13 |CIY D 2C TIMR C
14 [<2> 2 2D | CH 2
15 JUMP F 2E JUMP =
16 [<O> 0 2F [< 1
17 |7 7 30 [« 8
18 ALY 8

No.58 Turn on Binary LEDs in both directions at once, starting at the outside

A) Key in the program and check it.
B) Press RESET, 1, RUN to start the program.

. . display starts at outside LEDs (0 and 6)
00000 - works inwards and then back out to
65432’]008!’@6.

Vary the speed of change by altering the value at 01. See
what happens if you change the value at 06.

FLOWCHART
"START)

=]
1)

Ble

Set timer value to
0.6 seconds.

Set pointer to
RH LED.

Store timer
value in Br.

& RH pointer
inZr.

Set pointer to
LH LED; turn
on LH LED.

Get RH
pointer from
Zr, replace
with LH
pointer; turn
on RH LED,
start timer.

Add 1 to RH
pointer, store
inZr.

Subtract 1 from
LH pointer,

test if # 2.

Yes — return

to 07. No —

go to next step
{center reached).

Add 1 to LH
pointer, store

inZr.

Subtract 1 from
RH pointer,
test for # F.*

Turn off RH
LED.

1 Get LH pointer
{ from Zr, turn

28 | off LH LED.

Get RH
pointer and
timer value

into Yr/Ar,
start timer.

I Get LLH pointer
| into Yr, return
to 18.

* Test for # F:
No — go to 00 to start again.
Yes — go to next step.

—-104—

No.59 Transfer Contents of Addresses 50-57 to 58-5F

When you move a character from one location to another you TRANS-
FER it. Remember that the character is COPIED — when you move it
from 50 to Ar, it remains in 50 but a copy is put into Ar. The Micro-
computer Trainer has only a small amount of data storage, but this
program illustrates a principle which is used in large computers too.

PROGRAM FLOWCHART
address .| command mgggg‘e
00, [Try A
01 <0> 0 ‘ } Set pointer to address 50.
02 MA 5 Move contents of pointed
03 ALY B address to Ar.
04 <8 8 | inter by 8 add
ncrease pointer ;
05 AM 4 contents %f Ar toy pointed
06 AlY B address (= source address +8).
07 <9 ¢
i by 9 (&
08 [CIY O scvance tmamory by 1), tese
09 (8> 8 for pointer # 8:
0A JUMP = xgve:”.STOP (eight values
08 0> 0 Yes — return to 02.
oCc |« 2
010) JUMP F
OE <O» 0
OF D> D

A) Key in the program and check it.

B) Load some data into 50-57. To make sure that the program puts into
68-bF what you expected, load zero into 58-5F before running the
program.

—-105-

For example, you might put 0 in 50, 1in51,........ ,
7 in 57, like this:—

4G 6] @ o8 @ YE @ -——— 40

C) Press RESET, 2, RUN to start the program.

D) Check that your data has been moved into 58-6F,
like this:—

©}
°
o
°
°
o
o
°
- O u>™

& - - — - 0@ L%k kX

The command at 03 (Yr + 8 = Yr) sets the pointer to
an address 8 higher than the address from which a
character has just been taken. The command at 06
(Yr+9 - Yr) adds another 9 to the pointer — so each
time round the loop, 17 is added, the carry is
dropped, and this is what happens:

= (10 0010 = 2 (decimal)

No.60 Count Frequency of Numbers less than

This program searches 50-bF. When it finds a number less than
6, it keeps track of it. Then it displays the number of times a
number less than 6 was loaded into registers b0-5E.,

6 stored in memory

PROGRAM .
address |command | machine A) Key in the prOQram and check it.
00 TIA 8 B) 'Load number_s into addre_sses 60-bE. For example, put 3
01 |« 0 into 50-68, 7 into 69-6E, like this:—
02 |cH 2 Yo e[0] M) @ bG) @m——— o
03 |TIY A
04 | 0 C) Press RESET, 2, RUN to start. A
05 MA 5 d.nswer
06 |AIA 9 The count is stored in Br, Isplayed
07 <A A
08 | UuMP = FLOWCHART
09 [<O» 0 (_START)
OA <F> F ; 00
08 |CH 2 L T 3 I
gg ?1 |>A ? i B?. a count by storing O in ‘ ' Yr:“;Zr Restore count to Br.
Yrazr ___.)i oF
Ot |CH 2] 03 [vr¥15yr]} Add 1 topointer.
OF AlY B i O—Yr —l } Set pointer to address 50. " ‘ Test for £F: ’
10 1> 1 |05_ Ml; Move contents of pointed | YES A ‘ :r:ﬁm; ;g‘tjt:;r;s)to 05 (rgad
11 [Cl1Y D i |} adress to Ar. 16 No No — go to next step
12 [P F e L ArBr '
Ar+ A—Ar Add 10 -

13 JUMP F Ly —1 carry.1 10 Ar. test for M=) Get count from Br, display
14 0> 0 08 Yes — go to OF (number is] 271 on HEX. LED (all memory

%— greater than 5). L Ar—0p l addresses have been exam-
15 5> 5 08 No YES||No — go to next step. P PR— ined) and STOP.
16 |CH 2 CArZBr
17 AQO 1 erzr,, Get count from Br, increase
18 | JUMP F 0c by 1.
1 9 <1 > 1 [Ar+1—Ar l
1A | 8 |

-106-

No.61 Accumulate and Display Total Contents of 50-5D

This program adds together 14 numbers (50-5D).
The program carries out a hex addition of the numbers at addresses 50-5D. The last digit of the answer is dis-

played on the HEX. LED, the first digit at RH side of binary LEDs.

PROGRAM FLOWCHART
address | command| machine address | command| MaShine (. START) — 18 Add contents
00 [TIY A 16 |JUMP| F o [Mrar—ar |) ofpointed
01 {E> E 16 {1 1 L E—vr l 19 test for carry;
02 |TIA 8 17 1< 5 | - iAr 02’ e ka— | No — return
03 [0 18 M+ 6 I Move 0 to < Yes—goto
04 Arl8r 1F.
04 |AM 4 19 |uumP| F | Ao]| Sadesses BE/ vz
05 |TIY A 1A <1 1 | 1 % | for total). 1 20
06 | F 18 <P F | F—in | I E*lY'" I store pointer
07 | AM 4 1¢ {uumrP| F l — 07| l - 22| and total 5o
o N — r ;
o8 |[Tiv A 10 <oy 0 add 110
] ®8 | Set pointer y 3\ first digit
09 <O> 0 1& B> B8 I Iy O—Yr) to address I Ar+1—Ar 1| of answer
oA [ma 5 18 | cH 2 , T T 4 5| BE s
0B [AIlY B 20 |TIY A | ' MIAP] L A‘rIM] Ar, return to
1 08 % B.
oc <1 1 21 | E "—’I e Mo Y=
0D |ClY D 22 |MA 5 T —| contentso ezt
0E |<E> E 23 [AIA | 9 | XE _—<ie— adestwoAr T
oF |uumP| F 24 <1 1 NO o | o test
10 [1 25 | AM 4 | Ar—0p. | fY";SY'gOE;
- * No — displ
11 < 8 26 |cH 2 T lD e I digit of nawer on
12 | A0 1 27 |JumPl F last digit, ..+ HEX. LED, first
on binary LED, and
13 [CAL E 28 |<o» 0 . | STOP.
14 |DSPR| D 29 | B

A) Key in the program and check it.

B) Load some numbers into addresses 50-5D.

Example: 50~55¢(2> 566~59<1> 5A~5D(3>
242+2+2+24+2+1+1+1+1+3+3+3+3=1C(28)

@ 45 o) @ ¥ = ¥ 5 =

C) Press RESET, 1, RUN to start.

4 2 1 8 4 2 1
® ® 6 &6 0 &

-107—

The hex answer
is1C
(= decimal 28)

No.62 Display the Average of Numbers held in memory

Work out average of 14 numbers held in 50-5D.

An average is calculated by adding together a group of numbers and then dividing the result by the number of items in

the group. In this program, any remainder is discarded.

PROGRAM ©) @ @ @
address | command| machine address { command| mMachine address | command | Machine address |command | machine

00 | Tly A TF | AM 4 3E (2 2 46 |ALA 8]
01 = E 20 |CH 2 3F | JUMP F 47 <1 1
02 |TIA 8 21 AlA] 40 <O 0 48 | AM 4
03 <O 0 22 < 1 41 (=) B 49 |CH 2
04 | AM 4 23 | CH 2 42 {CH 2 A4A TJUMP F
05 |TIlY A 24 | JUMP = 43 | TIY A 48 <O 0
06 | F 25 1< 1 44 [<E> E 4C (B> B
07 |AM 4 26 [] 45 |MA 5
08 |[T1Yy A 27 | AM 4 ,
09 (o 0 o8 TI1Y A A) Key in the program and check it.
O0A [MA 5 29 <& E .
o8 a1y B on | mA 5 B) Load some numbers into 50-56D.
oC 1S 1 2B AL A 9 Example: 50~54<4> 55~509¢6> 5A-50D<1>
0D |civ D oc <P F e W3] o0 @ Mol & Mol - - - 5
8E iJEle\/IP E gg ZJ3U>MP g C) Press RESET, 2, RUN to start the program.
10 (3 3 2F (52 5 D) Answer is E} sum total = number of items = Average
M e B 30 ChH 2 (A+4+4+4+4+6+6+6+6+6+1+1+1+1)+14%=3 ’
12 |CH 2 31 AO 1
13 | TIA 8 32 |JumpP F E) Try changing the data in 50-6D.
14 [<O> 0 33 (3 3 Remember that remainders are ignored.
15 | CH 2 34 {2 2
16 TIY A 35 AM 4 Division is carried out by repeated deductions. The number of
17 <P F 36 TIY A deductions is stored in Br and displayed on the HEX. LED.
18 AM 4 37 <P F A program this long has a very complicated flowchart; treat it
10 TIHA 8 38 JUMP F like a jigsaw puzzle and fit all the pieces together in your mind.
1A |<E> E 39 (2 2
18 M- 7 3A <O 0 This is a long program. Don’t worry if you cannot understand
1C | yumpP = 38 | M+ 6 it at first. Come back to it later.
10 |2 2 3C | JUMP F
16 <7 7 30 |« 4 —108-

The same as program 61,

FLOWCHART

3B

- M+ Ar—ar -]

: . Put second digit of
total in Br, put 0
in Ar.

13

1, Put second digit of
1 total in Ar, put O
in Br.

The same as program 61, 18-29

i Move second digit
| of total to 5F.
|

of items (E)
from second

‘ Subtract number
f
' digit of total.

| Hf no overflow
I store result in 5F.

Get count of
‘ deductions from
Br, increase by 1,

return to Br. YES

-109-

If overflow when reducing sec-
ond digit of answer, store at
5F, reduce first digit by 1,
test for carry:

Yes — go to 35 ({first digit
remains — or = 0).

If No — go to next step.

1f not

If possible to
reduce first

digit of answer,

store first digit
at bE, set
pointer to

5F, return to
20.

possible
| to reduce
first digit

of answer,
get number
of deduc-
tions from

i Br, display
on HEX.

LED, STOP.

No.63 Hex Addition: 2 Digits + 2 Digits

Add two hex numbers to get a hex answer.

PROGRAM @ ® @ A) Key in the program and check it.
address [command| machine address | command| machine address | command| machine 8) Load data int add
oad data into memory at addresses
T A s Tn e [T esmse
i M+ 6
| 02 [TIA 8 1€ | F 3A | am 4
| 03 |<o» 0 1F [JuMP| F 38 |AlY B Example:
04 | AM 4 o0 | <o 0 3c | <E> . 50-51<19> 52~53<¢16>
05 | TIY A 21 | <D O 3D |MA 5 50(51 52|53| |54|55/56
06 [5 272 TIY A 3E |AIA 9 t—’l‘g_f+ 1 6‘=[L > E{
07 |AM 4 23 | ® 6 3F | < 1 HEX + HEX = HEX
08 TIY A 24 MA 5 40 AM 4
09 | 6 25 | AO 1 41 |ary B = #0] o[0] @ 40 & lg] @ i
OA | AM 4 26 | T1Y A 42 1< 1 =5 f
OB TIY A 27 5> 5 43 JUMP F
oc <1 1 28 | MA 5 44 [<1> 1 C) Press RESET, 1, RUN to start the program.
0D | MA 5 29 TIY A 45 B> B8
Ok AlY B 2A <Ee> E 46 JUMP F
OF 2> 2 2B AM 4 47 1> 1
10 [M+ 6 2C (T1Y A 48 | B B
11 |JUMP| F 2D | <4 4 '
12 (3> 3 2E MA)
13 7> 7 2F TIY A Jast
14 ALY B 30 |[<F F D) First 4 2 1|8 4 2 1 digit
15 (<3 3 31 [AM 4 dgite @ @@ ® = @
16 |M+ 6 32 | cAL E first digit| middle digit Note — the answer
17 |oumPl F 33 oser| O 5 5 = isinhex.
18 <3 3 34 JUMP F .
19 |<AY A 35 <3 3 The displayed answer is 3 digits and is displayed using both
1A AM 4 36 (4> 4 halves of the binary LED and the HEX. LED. The first and
18 [AlY B8 37 AlY B middle digits are displayed in binary.

—110-

FLOWCHART
(_START)
00

[4-—-Yr

{

L O—Ar

!

[Ar—smM

!

| Bayr

|

Ar—smM

|

6-Yr

l 0A

sl e Us L]

=]

<

hiad 50 Red 1 R

i 08
1-Yr |

Ar—M |

| Put 0 in 54/55/56 (= store
[for answer).

{

l

Set pointer to 51.

0D)
L

y
| Yr+2-Yr —I
| 10

[Mtar—ar]
n YES

M—Ar | \

Get contents of pointed
¢ address, add to contents of
that address + 2 (53 or 52).

I

]

|
|
|
7
i
|
I
i
)
7

[vres—vr 31
[M+ Alr‘——»Ar 19
1 3A
L Ar—>M |
i 38
[YT+ F-Yr I
! 30 |
i M—>AT]
] 3E
| Ar+1—Ar |
] 10
| Ar—i B

41

1 Yr+1oYr

.

15 !

carry

NO 14

[Yr+3—Yr
] 18

{ M+Ar—Ar |
17

m YES

| Test for carry:

mi

Yes — go to 37.
No — add contents of address
+ 3 (56 or 55).

b yreasyr]
YES 10
Yr+F

NO 2
.
1 24

l M- AP]
| 2%
[___Ar—op]

If carry at 11 — add contents
of address + 3 (56 or 55).

Add 1 to contents of previ-
ous address (55 or 54),

Add 10 or 10+1 to pointer
(depending on entry point),
test for Yr # F:

Yes — return to OD (last
digits just processed}.
No — get last digit of

answer from 56, dispiay on
HEX. LED.

NO

—-111 -

l_ S5-Yr
l 28
I M—Ar |

| E—Yr i
] 28
l Ar—M |
] 2C
[4-Yr]
I} %€
[M—Ar |
] oF
1 F—Yr]
! 31
L Ar—M]
| 2
[cacoser]

|

Store middle and first
digits of answer at 5E/5F.

|
|

! Display 5E/5F in binary,
\ STOP,

J

No.64 Hex Subtraction: 2 Digits — 2 Digits

Displays E on HEX. LED if answer would be minus. Remember, these are hex numbers.

PROGRAM @ ©
address [command | machine address | command| machine
00 [T1Y A 10 [T1Y A
01 [0 16 [<B E
02 |MA 5 1F | AM 4
03 |TIY A 20 |TIY A
04 | 4 21 [P F
05 |AM 4 22 {TIA 8
06 |[TIY A 23 |[<o» 0
07 <D 1 24 | AM 4
08 |[MA 5 25 [CAL E
09 |Tivy A 26 |DSPR| D
0A |5 5 27 |Tiy A
0B |AM 4 28 [5
0C |AlY B 29 [MA 5
0D |[<E> E 2A | AO 1
0E [MA 5 2B |JuMP| F
OF |AIlY B 2C [2
10 |<2 2 2D [8
11 M- 7 2E | AM 4
12 | JUMP| F 2F ALY B
13 <2 2 30 | F
14 |<BE> E 31 [CIY D
15 | AM 4 32 <& 4
16 |AlY B 33 |JUMP| F
17 <D D 34 <3 3
18 [ClY D 35 <O C
19 [« 1 36 [MA 5
1A |JUMP| F 37 |AILA 9
1B <O 0 38 [P F
1C [<E> E 39 lJump| F

—112-

9 @
address [command| machine address | command m(a:ggéne
3A <O 0 43 [CAL E
3B | B B 44 RSTO| O
3C | TIA 8 45 [CAL E
30 | & E 46 TIMR C
3E |AO 1 47 | JUMP F
3F | TIA 8 48 <3 3
40 |2 2 49 <O C
41 [CAl_ E
42 TIMR C

A) Key in the program and check it.

B) Load a number into 50/51, another into 52/563, for exam-
ple load the numbers 32 and 19.

i - Nl - M -

I
Note — these are hex numbers.

C) Press RESET, 1, RUN to start the program.

D) 4271|8421
oo 000 :

If the answer is negative, E is displayed‘ on the HEX. LED.

@ Note — the answer is in hex.

All three displaying positions are used to display the result.
But since in this program the answer is never greater than 2
digits, the first digit is always set to O.

FLOWCHART

Move contents
of 50 to 54, 51
to 55.

Lo Aram o
l 0 ! Point to current
[- -] | address less 2.
Get contents
| of pointed
address,

Subtract it from
| pointed address

+ 2, test for

overflow: *

Store result at
pointed address.

Subtract 3 from
pointer, test for
Yr# 1: Yes —
return to OE (to
deal with first
digits of
calculation),

No — move
contents of 54
to 5E, move O to
5F, display first
contents of 55
on HEX. LED,
contents of

5 F/E in binary,
STOP.

i 1f overflow at 12,
i store result at

- S ; reduce pointer
YES 31| by 1, test for
t PYr# 4 ws

1 Get contents of
o i pointed address
w | (=54),subtract 1,

1/ test for carry: ***

YES

Display E on
HEX. LED at

intervals.

regular 0.3 seconds

** Test for Yr # 4:
Yes — go to 3C (error)
No — go to next step.

*** Test for carry:
Yes — go to OB {to deal
with first digits).

No — go to next step
{error).

* Test for overflow: Yes — go
to 2E (need to reduce next
digit of answer by 1), No —
go to next step.

—-113-

At 2F the result of adding F to Yr is 4 if the previous
value of Yr was 5. This means that the overflow at 12
is O.K. provided that the value at 54 is at least 1. At
16 the result of adding D to Yr is 1 if the previous
value of Yr was 4. This means that the first digits of
the sum have just been processed so the end routine
should now be executed.

No.65 Hex Multiplication: 2 Digits X 1 Digit

Three-digit result is stored at addresses 53-b5.

PROGRAM ©)) 3 @

address | command| machine address | command| machine address | command| Mmaghine address | command| maghine

00 | TIY A 10 M+ 6 3A |2 2 43 < 1

01 <5 5 18 | JUMP F 38 | 2 44 M+ 6

02 |TIA 8 1R 12 2 3C [JUMP F 45 | AM 4

03 [<O» 0 20 <O D 3D |<2> 2 46 | TIY A

04 | AM 4 21 AM 4 3B (& 2 47 1<% 5

05 ALY B 22 |AlY B 3F | AM 4 48 | JUMP F

06 [P F 23 [<B B 40 |[AlY B 49 <2 2

07 |CIlY D 24 |[ClY D 41 [<F> - A4A |2 2

08 [<2> 2 25 <P F 42 | TIA 8

09 |JUMP F 26 | JUMP F

OA [<O> 0 27 <1 1 , _

o8 | 4 28 <A A A) Key in the program and check it.

0C |MA ° 29 |cH 2 B) Load a twodigit multiplicand in 50/61 and a one-digit

gg ?o|>A 8 gg EJOU;V‘P g multiplier in 52.

oF |uume| F 2c <o D Example: |05 P2 = PRRRARE

10 |<D 1 2D |AM 4

11 <D 5 2E [ALY B8 & W3] o0 = Yo & o] & Jo) &

12 | JUMP F 2F [<F F :

13 (<1 1 30 |TIA 8 C) Press RESET, 2, RUN to start the program.

14 (<2 2 31 <1 1

15 [ATA S 32 M+ 6 D) &= MZ] o] e @] & 7 @ 2

16 <P F 33 | JUMP F o

17 lcH > 34 |¢3> 3 Note — the answer is in hex.

18 | T1Y A 35 [P ~

19 <1 1 36 |AM 4

1A [MA 5 37 (AlY B

1B [AIY B 38 [1

1C <4 4 39 | JUMP F o 14—

. U

FLOWCHART
(_ START)

!
B O=Ar

!

[Arem

. }

Yr+ Foyr

s e tads Los

l Ar+F—ear- |

1 i

ArZBr
Yo2zr
18
b =

Move 0 to
addresses
53/54/55.

Move contents
of 52 to Ar (=
multiplier).

If multiplier
=0, STOP.

Reduce
multiplier by
1, store in Br,

Set pointer to
51.

—— 1A

| M=ar)
- Add multiplier
18| to last digit
L yrsd—vr 1 of multi-
l D plicand, test
[F—] for carry: *

YES

[¥

Store result
] } of addition
-’ in 55/54.

If carry at 1b, store result
of sum in 85 or 54.

Subtract 1 from pointer,

point to 54 or 53, add 1 to
next digit, test for carry:
Yes — go to 3F {middle digit
has overfiowed too). No —
go to next step.

YES

] } Reduce pointer
d ! by 5 {point to

YES 24 50 or 49).
<N HF T
NO - 2| Test for
Al pointer # F
Sy for example O
or less: **

»*

Test for carry: Yes — go to 2D.
No — go to next step.
* %

Test for pointer # F: Yes — return

to 1A {pointer = 0, go to deal with
first digit).

No ~ return to OD {to repeat addi-
tion of multiplier).

-115-

Store revised L o AP

digit at 54 or

53, adjust [
pointer for

returning to

main program. L

If carry at 33
store result of
middle digit
addition.

| Add 1 1o first

digit (53).

Restore
pointer to last
digit and
return to

main program,

No0.66 Hex Division: 2 Digits + 1 Digit

The answer is displayed in binary on binary LEDs; the remainder on the HEX. LED.
PROGRAM @ =) A) Key in the program and check it.
address | command mggg;;e address | command magg'”e address | command "‘gggg‘e ..
= B) Load the number to be divided at 58/
00 fTiY | A 1C | CH 2 38 | TIv | A) 59, the divisor at BA. (DO NOT put 0
01 (8> 8 10 |ATA 9 39 <A A in BA)
02 | MA 5 TE XD 1 3A [MA 5 Example: Put 16 in 58/59, 6 in BA.
03 |TIY A 1 | JUMP F 3B [TIY A .
04 | C 20 |2 2 3C | D w3l Yo = o) wo] &
05 | AM 4 21 (5> 5 30 M+ 6
06 [TIY | A 22 |JUMP| F 3E | AM 4 i) &
07 <& 9 23 <1 1 3F | AO 1
08 |MA 5 24 |1 1 40 |CH 2 C) Press RESET, 1, RUN to start.
08 |TIY A 25 |CH 2 41 TIY A
OA [|<KD> D 26 TIY A 42 KC> C 4 2 1 8 4 2 1
0B |AM 4 27 | B8 43 | AM 4 eo0 000
OC | TIA 8 28 | MA 5 44 |\TIY A 0 3
oD <O 0 29 Al A 9 45 = E first digit last digit remainder
OE | TIlY A 2A 1< 1 46 | AM 4
oF | B 2B | AM 4 a7 |Tiv A 58|59 [5A| |5B[5C] hex!
10 AM 4 2C [JUMP = 48 | B ‘ 11 6]+ } 6‘ = 0 3! (4] remainder
1 CH 2 20 < 1 49 MA 5 Remember, these are hex numbers.
12 | TIY A 2E [<2> 2 AA |TIY A ,
13 <> A OF AM 4 a8 | ¢ = Look at this program carefully, |t goes past
14 |MA 5 30 |TIY A ac | AM 4 the hupper limit é)f 4F1 ?ut thi;dis all rigg}
— the program does not use addresses
15 Ty A 31 C = 40 [CAL E 51 for F;to?age. Remember this: if there isa
16 <O D 32 [MA 5 4E DSPR O large program you can use 50-bF for it
17 M- 7 33 |ATA 9 4F | JUMP} F provided that the program does not need
18 | JUMP F 34 |<F> F 50 [<4 4 any memory for data storage apart from
19 <2 2 35 [JUMP F 51 F> F the registers.
1A [<F F 36 [<1> 1
1B | AM 4 37 4B B
-116—

FLOWCHART

(__START)
00
L 8—Yr —l
l i 02
[M—>Ar |
| 8
l . C—Yr 1
) o
I Ar—Mm | | Move contents
l w | of ;';8/59 to
5C/5D.
L S—Yr I
| 0
[w~m-oar |
l 09
| D—Yr |
| 08
I Ar—M |
j, 0C
[O—Ar] Move 0 to 5B
0E | (=first digit
l By l of answer).
1 10
| Ar—M |
l N Store contents
AretBr J of Arin Br.
Yr222r

Repeat deduction.

[Ar-+M

J

~117-

1 12 . 1 2F
Get divisor &
L A—Yr deduct it from L Ar—M]
14 | 5D, answer I 3
to Ar, test
L M—~Ar l fgr orverflow: L Coyr
% Z;s*— goto i »
l O—~vr No — store L M—Ar j
l 17 | result at l 3
- pointed s
| M-aAr—ar 18] P ed | Ar+ F—Ar 35]
#m YES YES m
18 NO fe NO B
Ar—M | B A-Yr]
! 1C Add 1to 3A
P count, ** M—A
C:_,S: test for carry: L L 32
haod No —go to 11
i (repeat | D—Yr |
deduction).
I Ar+1—Ar] Yes — go to 1 D
1= 25. + Ar—Ar
7
=_Carry? == 3E
[NO [Ar— 1
%)] 3
| Ar,i_'ar‘ | i | Ar—l-Op |
26 1 40
[Bvr] ‘ ArcBr
Add 1to 6B -
1 28 ’ (= first digit yrezr
I M—Ar] of ded)uctlon ! p
L 1 ?gl r ;:ount return L C_lw]
Ar+1—Ar a3
i ?% Ar—sM]

[

If overflow at
17 L X X)

Test for carry:

Yes — return
tO "B. L2 2 X
No —go to
next step.

LA 22 2

Calculate
remainder by
adding back
divisor into
5D, display
on HEX.
LED
(divisor was
deducted
once too
often).

Get last
digit of
deduction
count, store
at 5C.

]
L

M
E—Yr |
! 4
[Ar—sM]
‘I' 4 | Store last
[B—Yr]| digit at 5€,
l 49 first digit
at 5F, display
L M—Ar]| in binary,
T 4 | STOP.
[F—Yr]
! i«
[Ar—m 1
40
[caoser]

aF

-]

* Yes — go to 2F {need to reduce
first digit by 1).

** Add 1 to count (= number of
times through deduction loop).
***1f overflow at 17 — store
result of subtraction, subtract 1

from first digit of dividend.
**** Yes — return to 1B (first
digit was still 1 or more).
*#*** No — go to next step (end
of calculation).

(4) Group 4 Commands

There are nine commands in group 4. They are CAL
INPT, CAL CHNG, CAL SIFT, CAL ENDS, CAL
ERRS, CAL LONS, CAL SUND, CAL DEM —, CAL
DEM +. As usual they will be introduced and explained
one by one.

This is the last group of commands. All of the com-
mands that you are learning are useful and important
and make it possible to do interesting things with your
Microcomputer Trainer.

CAL SUND COMMAND (CALI SoUND)
This command generates a musical sound that varies ac-
cording to the contents of Ar. The range of notes is the
same as the range used in earlier experiments 1 and 2.
Table of musical values:
Contents of Ar sol-fanh Contents of Ar sol-fah
[IECRERRRCTER no sound S TRETETRETRE la
Aarrerrneens la Qeenrrrennens ti
Divervennin ti NS do
< IRTTeen do = T re
Qevnennnnnnes re Goreeeeennnes mi
Bpreveennnnnes mi Deeerereeens 3
Beveeeennnes fa Eevnrrrnnnns sol
L Firneeeees sol Foevreemnnnnns no sound

No.67 Use of CAL SUND

Basic program for generating organ notes

PROGRAM
address |command] machine
00 KA 0
01 JUMP =
)24 <O» 0
03 <O 0
04 [CAL E
05 SUND B
06 JUMP F~
07 <CO> 0
08 <O» 0

| Test for key pressed: No —
‘ wait, Yes — go to next step.

NO o

YES

T A Play note corresponding to
ﬂj CAL: SUND J } keyypressed. P o

% } Return to 00 and repeat.

This is the program for a very simple organ.

A) Key in the program and check it.

B) Press RESET, 1, RUN to start the program.

C) Press 1-E keys to play notes of different pitches.

No.68 Use of CAL ERRS

CAL ERRS COMMAND (CALI ERRor Sound)
This command makes a nasty noise. |t is used when an
error occurs in a program.

PROGRAM
address | command| machine
00 TIlY A
01 <O 0
02 TIA 8
03 (B> E
04 AO 1
05 [CAL E
06 ERRS 8
07 [CAL &
08 RSTO 0
09 AlY B
OA <15 1
OB |CI1Y D
oC <5 5
0D JUMP F~
Ot <1 1
OF (3> 3
10 JUMP F
11 <1 1
12 O 0
13 TIA 8
14 <O 0
15 [CAL E
16 TIMR C
17 JUMP F
18 O 0
19 (2 2

FLOWCHART
(__START)
] o
| oovr "]} MoveOtoYr
EEEAhIG {= count).
——]
——r—
L E-ar Display E on
— 1w | wexUep.
[Ao]
. 05
[CACEerAS] | ERROR sound.
07
[CACASTG] | Turn off HEX. LED.
09
L yreasyr } Add 1 to count.
Test for Yr# 5:
Yes —go to 13.
No — STOP.

} Return to 02.

—119-

Lo = 1]

15 Wait for 0.1 seconds.
L cALTMR] J

17

This program makes the ERROR sound and displays
E on the HEX. LED five times.

A) Key in the program and check it.

B) Press RESET, 1, RUN to start the program.

No0.69 Use of CAL LONS
This program is a simple way of generating code signals.
CAL LONS COMMAND (CALI LONg Sound)

This command generates a long sound {compared with
CAL SHTS, program 45).

Some of the programs in this manual use Morse Code. A) Key in the program and check it.

Here we are writing codes into a short program which

then produces the signals. B} Press RESET, 1, RUN to start the program.

This program repeats the Morse code for HELP. FLOWCHART
(. START)
H E L P || 0 — 1C
—_—— e e Set timer value to
csee \17 o—— L "‘iA'“ | } 0.1 seconds. ﬂ CAL LONS | } Long sound
0 1 1€
[r CAL SHTS] } Short sound | CAL LONS | | } Longsound P
Space between characters ! o ! 2
PROGRAM I cAL fHTS 06] } Short sound I oa lSHTS | | }shortsound
m in T 22
address [command| machine address | command| mashine I CAL SHTS | } Short sound [B AP | Pause for
00 TIA 8 16 [CAL_ E L 08 l % 0.6 seconds
01 <1 1 17 SHTS 9 " CAL SHTS | } Short sound [] CAL TIMR ! at end of word.
02 [CAL E 18 [CAL E] 0A %
03 SHTS 9 19 TIMR C CAL TIMR
o4 [CAL e 1A [CAL = N ; 0CI } Character space } Return to 00.
05 SHTS) 18 SHTS 9 CAL SHTS h
06 | [CAL E 1C | [CAL E L - I < OEI)shortsound fe
07 SHTS 9 10 LONS A
08 [CAL £ 1E [CAL £ " CAL TIMR l } Character space ’
09 |[lsHTs 9 17 |LLONS A — ! g N
OCA {CAL E 20 [CA{_ E it CAL SHTS | } short sound
o8 |LlTIMR C 21 SHTS 9 | 1
oC [CA[_ = 20 TIA 8 [L CAL LONS l } Long sound L
00 |lSHTS 9 23 | 5 5 ! 14
0OE [CAL E 24 CAL E [CaL sAts]} short sound
oF |LTIMR C 25 [TIMR c 4 it
10 [CAL E 26 JUMP = [caCsnts]) Shortsound
11 |lsHTS 9 27 | <o 0 | 16
12 TCAL E 28 <O 0 i CAL TIMR | } character space
13 LLONS A l 14
14 CAL E CAL SHTS Sh
s |lshts| s Aul =5 1 J) shortsouna

No.70 Use of CAL SIFT

This program uses CAL SIFT to count the odd numbers in 50-bE.

PROGRAM _ FLOWCHART CAL SIFT COMMAND (CALI ShIFT)
machine
address)command] code C START) This command shifts the binary contents Qf Ar one place to the right.
00 TIA 8 LY The command sets the FLAG to O or 1, values shown below:
01 |« 0 L oA 1) voveotosr :
BEFORE CALSIFT AFTER CALSIFT executing
02 CH 2 | 02 | {= count of
03 |TlYy A ArcBr | | odd numbers). hex No. | A-register A-register | FLAG setting
Yr22r 0 0000 0000 1
04 [<KO» 0 1 0001 0000 0
. | . 2 0010 0001 1
05 [MA 5 | O—Yr] | Set pointer to 50. 3 0011 0001 0
06 |[CAL E > % Get content a 0100 0010 1
07 [SlFT 6 | M—Ar] ofepg?nnteznaiidress. 5 0101 0010 o)
1 % ot 6 0110 0011 1
08 |JuMP| F T CAL SFT]| oiaes ot 7 0111 0011 0
09 | 0 [seeioid 8 1000 0100 1
~ Yes — go to OF. 9 1001 0100 0
OA <P F =% No — to next A 1010 0101 1
0B CH 2 NO 08 Step. 8 1011 0101 0
= C 1100 0110 1
0C ATA 9 g . | et coum D 1101 0110 0
1 = ’ | = 1110 o 0111 1
oD [<1 1 o = 1111 1-digit 0111 0
Oe [CH 2 [Ar+1—ar | ; shift right
OF AlY B l Add 1 to rrenmesseneonsenoensnnines
- 0E count, restore . .
10 <1 1 ArZBr Jto Br. When the CAL SIFT command is executed the F!_AG is setto 1
11 cly D yrzzr - if the number shifted is even or O if the number shifted is odd.
12 <R = | YH%_‘W - OFI }Add 1 to address A) Key in the program and check it.
13 |JUMP [F M e o B) Load data into 50-5E.
1 est Yr# F: .
14 <O O Ve < Yr#Fe == | Yes—return to 05. Example:
15 [<5 5 NOJ__ s Nomnextstep. 50]51]52|53|54|55] 59|5A|58|5C|5D|5E
16 |CH 2 ‘;r-_—;’f lfc;et count of 1 2 3] 4] s ol Al B8l c] bf €
17 |TiY A = rom gr. - e =
18 <M = [i 17I = 80] of0] & ol]] fol—————- ol
F—vr display
16 [AM 4 | T | Store in SF. C) Press RESET, 2, RUN to start. [7) on HEX.
1A [AO 1 [Ar—M | MEX. LED, There are 7 odd numbers listed in this program. LED
18 | JUMP = - i 1AﬂSTOP.
1C < 1 Ar—-0p
7 |emy =) I | 8 —-121 -

|
© @
No.71 Use of CAL DEM+ and CAL ENDS address | command mggglene address [command | machine
) o 1E 1> 1 2C MA 5
Decimal addition of Two digits + Two digits 1F | JUMP F 20 | T1Y A
CAL DEM+ COMMAND (CALI DEcimal conversion of M+ 20 <1 1 2E &> E
result) 21 (4> 4 oF AM 4
This command adds together the decimal contents of Ar 22 [CAL E 30 TIY A
and the pointed address to give a decimal answer and stores 23 ENDS 7 31 (6 6
that answer at the pointed address. If there is a carry, 1 is 24 TIY A 372 MA 5
added to the pointed address less 1. After the command 25 (4> 4 33 AO 1
has been executed the pointer is left pointing one address
below the pointed address. (If the number to be added is gg f\T/IA 5 34 [CAL E
in b4, the answer is put in 54 and the pointer is reduced by Y A 35 DSPR O
3. If there is a carry, one is added to 53.) 28 F> = 36 JUMP F
29 AM 4 37 (3> 3
CAL ENDS COMMAND (CALI1 END Sound) 2A TIY A 38 (6 6
This command is used to generate a sound to indicate that 2B <5 5
a game or calculation has ended. It sounds nicer than
ERRS sound! A) Key in the program and check it.
PROGRAM __ @ 2 B) Load the DECIMAL numbers to be added into 50-53.
address | command] MESGe"® _address |command | M5R:® Example: 50¢6> 51¢(3> 52¢5> 53¢(6»
00 TIY A OF TIY A 63+56=2%
01 1> 1 10 4> 4 Mi 5 far=) e Do e M e, R R
@) o = e O &) @ MENT,) (3"‘&‘) N
02 [ma 5 11 | AMm 4 0 <0 = ol &2 M e g '
03 AlY B 12 {T1Y A C) Press RESET, 1, RUN to start. The program then displays the
04 [|<%> 5 13 <3 3 answer and makes the END sound.
0b AM 4 14 MA 5 4 2 1i8 4 2 1
06 |AlY | B 15 [Aa1ty | B Answer| @ @ B0 @ @ B
07 (A A 16 (3> 3 1 : 1 last
08 |ClY D .17 |CH 2 first digit ~ middle digit digit
0% (F> F 18 CH 2
OA [JUMP| F 19 [CAL E address| 50|51 | |52]|63] _ [54/55|56)|
0B |{<O» 0 1A DEM+ F 6] 3| 5] 6/ | 1] 1] 9o
ocC (2> 2 18 AlY B .
oD ITIA 8 1c |« D Decimal sums may be easier to understand than hex sums, but con-
0E <o 0 0 lciy D verting hex to deciman_l uses up a lot of memory (see programs 35/36).
The CAL DEM+ routine is provided to save that space in the micro.
-122-

FLOWCHART
h (_START
l

)

LYPHBYr,

L

AT
|

]

Y+ AmYE |

03 -

%
l T=Yr ' I ‘
! »
| M—Ar

05

Set pointer to
1.

Move contents
of pointed
address to Ar.

Move contents
of Ar to pointed
address +5.

Deduct 6 from

© Yr, test for

Yr#F:

© Yes—return to
L 02

No — next step.

—

FLAG must be 1 for CAL
18+ command to be executed.

APT*Br © AlY at 15 may set FLAG =
L, ' 0. So two CH commands
ye2Zr. " are executed to ensure

i 15 FLAG=1.
L MAAr=M Add contents of pointed

. address to Ar, move decimal-
converted answer to pointed
¢ address, reduce pointer by 1.

Deduct 3 from pointer, test

cforYr# 1.
© Yes—returnto 14 *
- No — go to next step **,

L caLenps

i Generate END sound.

!

i 4-s¥r

* Yes — return to 14 (to deal with
first digits of sum).
** No — go to next step {4-3= 1.
This means the first digits are
processed).

Move last digit of answer to

Ar and display on HEX.

LED.

| S G —] Move O to 54. 1 “
l " ‘ . ‘ Move first digit of answer
[. S8 I : © to 5F for display at LH side
i of bi EDs.
; ; 1 ’ 2 Get pointer 1 of binary LEDs
| 3—syr] tos3. :] Kl
l 10 l l j [i LB I |
g —— ; Get content “ I
l M-—+Ar I | of pointeef:in ; , l 32 ’
l 15 address. L L MAr T 1 1
[[Tvrs3=yr] Add3to ‘ ! B |
17 pointer (56 1| Move middie digit of [e Ar=QOp i] i
TATER - Or 55). ¢ answer to 5E for dis- : "
sl l ZD | play at RH side of l 34
ez o L E—vr _ || binary LEDs. [caALoser "]
L I} oF |
py= 1 ‘ % I

—-123-

y‘ Display first part of answer
. on three LH LEDs, middle
part on four RH LEDs.

No.72 Use of CAL DEM—

Decimal deduction — Two digits minus Two digits o @
machine
CAL DEM-COMMAND (CALI DEcimal conversion of M— resuit) address | command | Machine address | command} code
This command deducts the contents of Ar from the pointed 32 ClA C 3F CH 2
address & stores the answer at the pointed address. The answer 33 1> 1 40 AlA 9
is decimal-converted. The value of the pointer is reduced by 1.*** 34 JUMP F 41 (F> =~
PROGRAM @ e 35 <4 4 42 | AM 4
h 36 |<6> 6 43 [JUMP =
address |command | M&chine address | command] machine
code 37 {TIA 8 44 |<2> 2
00 |TIHA 8 19 |<D> D 38 <> E 45 |<E> E
01 O 0 1A | MA 5
02 [|TIY A 39 |AO 1 46 CAL E
03 lem A 1B AlY B 3A | CAL E 47 |lenos| 7
1C <3 3 38 |lerms| s 48 |oumpP| F
04 |AM 4 10 | CH 2
3C | JUMP F 49 {4 4
05 |AIlY B 18 |CH 2
30 <3 3 4A <8 8
06 [« 1 1F [CAL E 3 1o o
07 |ClY D 20 DEM- E
08 |<O 0 21 MA 5 .
09 | JUMP = 22 |civ D In this program an END sound is generated when the deduc-
oA |« 0 23 |y 8 tion is successful — the answer is stored at addresses 5A-5C.
08 |<a> 4 54 If it is not successful (answer is minus) the ERROR sound is
JUMP A generated and E is displayed on the HEX. LED.
oc |TIY A 25 |<(3 3
0D <& 6 26 |2 2
OE [MA 5 27 |CIA C A) Key in the program and check it. !
OF TtY A 28 <O 0
10 | B8 29 luumr| F B) Load data into addresses 56/57, 58/59.
11 CH 2 2A |3 3 Example: |56|57 58|59 5A|58|5C|address
12 | T1Y A 2B | <P F 71 8]l—-[4] 8/={ 0] 2| 8|data
13 |<7> 7 2C | CH 2 o . .
14 [maA 5 20 | AM 4 = Y0 4o = %0 ® Yol & Yd F o "
15 | TIY A 2E |CH 2 C) Press RESET, 1, RUN to start. When you hear the END or
16 |[<KCo C 2F | JUMP E ERROR sound the program has finished.
17 | AM 4 30 [« 1 Now key in: - ,
18 |ALY B 31 |<8& 8 D) We) v e (O & J &g
. —124-

FLOWCHART

(_START)
00
l O—Ar I { Move O to Ar.
! 0
{ AT i ! Set pointer to BA.
1 o
Ar—mM] }
| ® |

I Move 0 to 5A-5F.

[B-Yr

!

| M—Ar

0E ‘, Move contents of 56 to Ar.

!

[B-»Yr

]

}

11 ’ Store contents of Ar in Br,

Art8r
Yr>zr

| and contents of Yr in Zr.
]

}

1z

I 7-Yr

!

4 ‘ Move contents of 57 to Ar.

| M-—sAr

}

| C—yr

|
I I
]

!

15

\
~ | Move contents of Ar (57) to
£ 5C

i Ar—M

3

L_

Yr+ 3—-Yr

!

Ar28r
YriZr

|

Ar8r
YroZr

!

: Add 3 to pointer.

| Execute two CH commands

to ensure FLAG = 1 and so

to ensure execution of DEM—,

M — Ar-smM
Decimal
conversion
Yr—1-—sYr

}

M-+Ar

Subtract contents of Ar from
pointed address, store an-
swer at pointed address
(decimal converted} reduce
pointer by 1., test for point-
er# B:

Yes — go to 32.

No — go to next step (first
time through loop).

n CAL ENDS
———

48

YES

|

YES
NO °C

AriBr ‘
Yr2zr |
1}
! 20 !
i Ar-—oM 1

2E J———
ArZ2Br }

Yr2zr

Test for contents 5B # O:
Yes - go to 3F*.
No — go to next step.

Move contents of Br to 5B.

Restore Yr from Zr.

kY
| E—Ar]
] 3
i Ar—Op i
34
[caLerrs]
| c
3F

ArZ2Br

Yrz2zr
4 0
| Ar+ F-sAr]
1 2
| Ar—M I
a3

17 .
‘] i
18

| vr+D—vr

]“Deduct 3 from pointer,

1A+ move contents of pointed

!
[

M—Ar

I : address to Ar.

*** The value of the pointer is reduced
by 1. If there is an overflow, one is
moved to the lower address.

2F

-125-

* Yes — go to 3F (deduction at 1F

caused overflow).

l Generate END sound when
J calculation complete, STOP.

If 2nd time through loop —
}Test for overflow at 1F:**

Yes — go to 37.

No — go to 46.

lDispIay E on HEX. LED,
l make

ERROR sound,
STOP.
If overflow at 1F first

time through loop — store
at 5B the result of deduct-
ing 1 from Br (56).

J

} Return to 2E.

** Overflow at 1F
(if overflow, Ar=1).

No.73 Use of CAL CHNG

This program sorts 15 numbers {in 50-6E) into descending

order. Q @
CAL CHNG COMMAND (CALI CHaNGe registers) address | command| ME53 address | commandf M2shine
This command swaps the contents of Ar, Br, Yr & Zr with 32 CH 2 3C 4> 4
the contents of complement registers Ar’, Br’, Yr’, Zr'. These 33 JUMP F 30 (27 2
registers can only be used by means of CAL CHNG. They are 34 &D) 1 3E AM 4
useful when extra addresses are required. 35 10), C 3F JUMP F
PROGRAM @ 1) 36 TIY A 40 <O 0
address | command mggg'e”e address | command mgggg‘e 37 F> F j; <C5:Z\L g
00 TIY A 19 <1 1 38 [MA 2 43 [ENDS 7
02 T1A 8 18 CH > 3A <1 1 44 JUMP =
03 (2 2 1C CAL E 3B JUMP = 45 4> 4
4 4
04 AM 4 10 [CHNG 5 6 {4 4
05 [CAL E 1E AlA S
06 CHNG 5 TF 1< 1 A) Key in the program and check it.
o7 TIY A 20 JUMP F~
o8 o 0 2 (3> 3 B) Load some numbers into addresses 50-5E.
09 |MmaA 5 22 <6 6 Example:
oA CH 2 >3 CAL = 50[(51]52|53|54|55] 59|5A|5BI5C|5DI5E
o8B |Tiv | A 22 |loms| s oL 1l =2l 8. 4] 5Si el AL BlLCLDLE
ocC <O> O 25 JUMP F~ ' X — -
oD MA 5 26 0> 0 ('g@ ©@ &= o\@ G lﬁ@ _____ g@ =
OE CAL 7 <D . .
OF {CMPL éEl 58 I\/IA? E5) C) Press RESET, 2, RUN to start. You will hear the END
10 ALY 8 59 ALY 8 sound when the sort is complete.
11 < 1 on | F D) &= MG] 3] @ diplays : @ -0 @ @@ £
12 M+ 6 2B AM 4 ‘
13 |JumP| F 2C |AlY B @ displays =« @ - @ @ @ = [
14 (2> 2 2D <15 1 ‘ o
15 [«& 8 2E |CH 2 =odisplays - @ @@ = @ |
16 MA 5 2F AlY B8 .. .and so on.
17 CH 2 30 <1 4
18 ALY 8 31 AM 4
-126 -

FLOWCHART

(_START

)

i3

F—s¥Yr

|

2-Ar

}

" Ar--M

l
¥

—)

TCAL CHNG

Q-vr

|

M—Ar

!

ArBr
Yr*Zr

|

O~eyr

@)

Move 2 to 5F.

" Store contents of Ar in Ar".

Get contents of 50 and
store in Br.

- Set pointer to 50.

!

M AP

|

Pt — .,

CAL CMPL

|

VR e

!

M+ Ar—Ar

Get contents of pointed
. address and store its com-

' plement in Ar.

Add complement to con-
itents of next higher ad-
" dress, test for carry:

: Yes — go to 28.
No — to next step *.

- 1

Yepzr

ArgBro

|

Wt

ARBr
Nror

Ar8Br
Yr2zr

Store Ar/Yr in Br/Zr, add 1
to alternate pointer.

Execute double CH to en-

. sure FLAG = 1 for CAL to
" enable CAL execution.

r

ﬂc’ !

[] CAL CHNG

!

[; AR —AC

. Add 1 to count in Ar’, test
- for carry:
i\ Yes — go to 36.

No — go to next step.

[~ ¢al chnG

' Put contents of higher ad-
dress in Ar,

* No — go to next step {Contents

of lower address are greater).

3

L M—Ar

!

| Yr+ oY,

|

Arsp

B

!

foyrerovr

I

Store count in Ar’, return to

+ OD.

If carry at 12 (contents of
lower address less than high-

. er address) move contents of

higher address to lower ad-
dress, restore pointer to
higher address.

———— 26
i AR 1 | . Get pointer to lower address,
" and its previous value, from
YrZr Zr/Br.
! 2F
[overt—vr]
l 3 |1 Bring pointer up-to-date,
l Ar—a\ . I store previous contents of
' lower address in higher ad-
l 32 . dress, store once more in
Ar_7Br i Zr/Br.
Yr2zr ‘
1 33
3 35
e
] 3w |
M—Ar ;
I] " If carry at 20 {a number has
1 3 | ' been sorted into the right
I Al + 1—>AP . place}) get count from 5F,

. add 1, test for carry:

Yes — go to 42 (end of sort).
No — put count back in 5F,
return to 05.

i

CAL ENDS |

-127-

Generate END sound, STOP.

At first you may find it difficult to
understand what is happening here. A
different kind of explanation is given in
the appendix at the end of the manual.

No.74 Sort Contents of 50-5E in ascending order

The contents of 50-5E are sorted and then displayed in ascending order.

PROGRAM @ @ ©) @
address |command| machine address |command | Machine address |command [maghine address | commang| machine

00 | TIY A 10 |ALY B 3A [JUMP F 40 <5 5
01 K> F 1TE <1 1 3B <4 4 4 rCAL E
02 [|TtA 8 1T | AM 4 3C <1 1 42 [ENDS 7
03 <2 2 20 |CH 2 3D | AM 4 43 [JUMP F
04 | AM 4 21 CAL E 3E | JUMP F 44 <4 4
05 [CAL E 22 {CHNG 5 3F <O 0 45 [3
06 CHNG 5 23 [AIA 9
8; <TO|>Y g gé <JqU>MP ; A) Key in the program and check it.
08 |MA 5 26 <3 3 B) Load some numbers at addresses 50-5E.
0A |CH 2 27 <5 5
08 [Tiv A 28 {CAL E Example:
oC |[<o» 0 29 |lLCHNG] b5 50|51]|52|53]54] |5B|5C|5D|5E
0D |MA 5 2A |JUMP| F s 1 ¢l o] Al s 11 8l 6
0E {CAL E 2B | <O 0
0OF CMPL 4 2C | <D D) @ WA @& ————————
10 |ALlY 8 2D |maA 5 = Hd] «[o] “o) W) =
T < 1 2E |CH 2 C) Press RESET, 2, RUN to start. The END sound will tell
12 M+ 6 2F ALY B you when the sort is complete.
13 | JUMP F 30 (<1 1
14 <2 2 31 CH 2 D) When you hear the END sound,read out addresses 50-5E
15 < D) 32 JUMP F to check that the sort has been completed correctly.
16 |MA 5 33 <2 2 sy M P s JRp— .o
17 A1y B 34 [0 = <ol ™ § = | =@
18 <M a3 35 | TIY A Each time you press (INCR) you should see a number on the
19 AM 4 36 < F HEX. LED which is equal to or larger than the previous one.
TA ALY 8 37 [MA 5 In this program both CH and CHNG are used. This means
1B <1 1 38 AlA 9 that both Br and Ar’ are used as working memories.
1C CH 2 39 [g -128-—

FLOWCHART

(_START)

!

0

L F—Yr

0
|

}

l 2-Ar

!

L - Ar—M

____,l

™ calcrne

!

l O-+¥r

!

| M—Ar

: 04

Ar’Br
YrZr

|

o

[QO—Yr

The same as program 73, 00-12

90 !

| M—Ar

1 UE

I caLcmpPe

!

[yrea—vr

!

| M+ar—ar

The same as program 73, 1C-25

-129-

I

IE— D —— 20
[M—Ar] : ArCBr
1 2E \ If carry at 13 Yroze
ArZBr i Icontent;.dof 1 ”
- i er re
yrezr ‘ a?(vevsmiller * " CAL CHNG]
|
1 2F | 50 no swap 1 23
[vre 1 ovr] ;‘eed"d- [arvioar |
T 3 | alternate
Ar—Br | count, go to
- i 20.
YroZr [
2 [caLcune |
2A
— 1
e — L=
17 ‘ F—Yr
| Yr+fl—‘~‘ovr] | I] 37I
19 ! M- Ar
I Ar—M I ‘ If no carry at l 38
] 1A 13 contents of | Ar+ 1—Ar |
l Yr+ 4 —vr] i lower address
are greater so
l 'C | need to swap
AR | contents as in
Yr:Zr | program 73,
- . 28-32.
| 10,
| Yr+ 1Y | ‘
—
Ar—M ? 41
—ET—

The same as program 73, 36-44

Compare this program with no.
73.

In 73 the data has to be sorted
into " descending order; if there
is a carry at 12, the neighboring
memory contents are swapped. |f
there is no carry at 12, the lower
address already contains a larger
number so No swap is necessary.

But in 74 the tests work the
other way around; if there is a
carry at 12, no swap takes place.
If there is no carry, a swap is
necessary.

The same differences are reflect-
ed on the flowchart. Addresses
16-1A in no. 73 do the same job
as 2D-31 in 74, and addresses
28-32 of 73 have the same effect
as 16-20 in 74. Only the posi-
tions are changed.

In the appendix is a further
reminder concerning comple-
ments.

|
|
t

No.75 Decimal Multiplication: 2 Digits X 1 Digit

Multiply decimal numbers to get a decimal result up to 799.

PROGRAM @ &) © @
address |[command | machine address | command| maschine address |commang | mashine address | command| mM2chire
00 |TI1A 8 10 <1 1 3A | LDSPR D 42 | TIA 8
01 <O 0 (= R 1 3B | TIY A 43 1O C
02 |TIlY A 1F | CH 2 3C <5 5 44 AO d
03 <3 3 20 JAILA 9 3D |MA 5 45 [[CAL E
04 | AM 4 21 (P> F 3 | AO 1 46 | ERRS 8
05 |T1Y A 22 |CIA C 3F | JUMP F 47 | JUMP F
06 <4 4 23 <O ¥ 40 {3 3 48 (4> 4
07 | AM 4 24 | JUMP F 41 > F 49 | <7> 7
G8 Ty A 25 <0 0 The answer is stored at 53-55. If the answer is 799 or less, all
09 [5 26 <& E three digits are displayed on the hex and binary LEDs.

OA | AM 4 27 | TIY A If the answer is 800 or more, it is stored in memory but not

0B TIY A 28 (3 3 displayed. Instead, C is displayed on the HEX. LED and the
! oc | 2 529 IMA 5 ERROR sound is heard. This is because the largest first digit
w op lwma 5 oA Al A o that can be displayed is 7 (binary 111).

Ot |CH 2 2B (<8 8 A) Key in the program and check it.

OF |T1Y A 2C | JUMP F .

11 MA 5 2E |2 2 r7*21‘ » TABA _ 15*— i "64‘ ,

12 |AlY B 2F | MA 5 [T

13 (<45 4 30 | TIY A o o . - .

14 |cH 2 31 | F == o) of0) @ ¥o] & o] & YJ]

15 JCH 2 32 | AM 4

16 [C/-\L = 33 |11V A C) Press RESET, 1, RUN to start the program.

A T [O B P P

19 | C 36 |Tiv A G S A A

14 [civ | o 37 | £ do [iddie duit

18 | <M F 38 | AM 4 7 5

1C | JUMP F 39 |ICAL E

-130-

FLOWCHART

(_START)
! ®
[O-sAr
! 02
L 3—Yr]
' o
L Arem]
L %
L g~ 1
] 07
L Ar—M J
! ®
| S—rAr]
! oA
L Arm]
1 08
L L 2Yr. —’
))
M AR 1
——l 0E
Arrgr
YrZr
| 0F
I 1-Yr]

L

Move O to
53/54/55.

Get contents
of 52.

Store
multiplier

in Br, set
pointer to 51.

Repeat addition until multiplier = Q,

!

M—Ar

Return to 11 to carry out addition for first

digit of multiplicand.

YES

] 12
| yr+a—wr]
1 14
ArZBr
Yre2dr
] 15
ArZer g
Yrgze
4 1
TMEArSM
18
-]
1A
R (e B
NO 1F
ArBr ‘
Yr2ze :
i 2%
| Ar+F—Ar |
2
Ar£Qe
NO

|

Ensure
FLAG=1.

Carry out
decimal
addition of
51 to 55 (or
50 to 54)
using DEM+.

Reduce
pointer by 4
(5 including
DEM+
reducing).
Test for Yr #
F*.

Get multiplier,
reduce by 1,
test#0, #e

-131 -

27 .
Y Test f er greater
l 3vr || than 768 (f first g
l 29 | greater than 7, this causes
I_ MesAr {| acarry):
Yes — go to 42.
2A | No — go to next step.
[Ar+g—ar]
c YES l 38
carry l S—s¥r]
2F } NO 30
| M—Ar 1 [M—vAr]
! 2) =
[Fa¥Yr | [Ar—0p 1
32 3F
[Tarem |
| 3 | Display first
[Avr] | & middle
digits of
35 (answer on T3 42
l M-+Ar] | binary LEDs, L Coar]
= via 5F/SE. l
36 44
| E<s¥r] { Ar—Op -
' % ! &
L AroM] [CCaCerms]
1 39 47
[cacospr] I
{

* Testfor Yr£ F:
Yes — return to 11.
No — go to next step (both

digits processed).

** Test £ 0:

Yes — return to OE.
No — go to next step.

Display
last

digit of
answer
on HEX.

Display C
on HEX.
LED,
make
ERROR
sound,
STOP.

No.76 Decimal Division using DEM— : 2 Digit = 1 Digit

PROGRAM @ e fc) @

address | command mgggg‘e address | command mgggﬁ_ address | command mggg'e"e address | command "‘gggg‘e

00 |TIY A 10 <A A 3A |CIA C 47 <O 0

01 <G> C 12 |MA 5 3B <O 0 48 | AM 4

02 |TILA 8 1F | T1Y A 3C | JUMP F 49 [CAL E

03 <1 1 20 |<B E 3D <& 4 4A ENDS 7

04 [CAL E 21 {CAL E 3E <& £ 48 | JUMP F

05 CHNG 5 22 DEM- E 3F JTIY A 4C <4 4

06 |TIA 8 23 |MA 5 40 |<A A 4D | B B

07 <05 0 24 ClA C 41 MA 5 4E AlA 9

08 |TIY A 25 <O 0 42 |TIY A 4F <R =

098 <8 B8 26 JUMP ~ 43 <E> E 50 CH 2

0A | AM 4 27 {3 3 44 [CAI_ E 51 JUMP F

0B |AIY B 28 |<6> 6 45 DEM+ F 52 |<2 2

oC <1 1 29 [CAL E 46 TIA 8 53 (9> 9

0D |CIY D 2A CHNG b5

OE |<O> 0 2B [CAL E

oF | JUMP F 2C DEM+| F A) Key in the program and check it.

10 |<O> 0 20D AlY B

11 |y A 2E <1 1 B) Load data at addresses 58/59/BA. ‘

12 |T1Y A 2F |CH 2 Example:

13 <8 8 30 |CH 2 58|59 5A 58|5C ‘ 5D|5E]| address

14 |MA 5 31 {CAL = 7 5]+ [8]=[_0[ojdecimall O] 3] decimal]

15 |CH 2 32 |lcHNG| 5 can WS WS e WD) e WS e UG e

16 | THY A 33 JUMP F~

17 |<S S 34 <10 1 C) Press RESET, 1, RUN to start the program. When you hear

18 {MA 5 35 KO C the END sound press: —

1A |<E E 37 <O 0 -

1B | AM 4 38 AM 4 answer remainder

1C JTIY A 39 |CH 2 Do not try to divide a number by 0. It does not work. 5D will

-132-

always have 0 in it at the end of the program.

FLOWCHART

C ST/l\RT D)

—

0 —— 19
[C—Yr] ‘ﬁ [E-vr] Move
l 02 [Q(A:)V?t%txr. l 1B | contents of
T 1 storein vr Y,]/ Arto5E.
1 04 | and Ar’, 1c l
L CAL CHNG j | L A—in j (Move divisor
06 1E | to Ar, set
L " o—ar IR [M—Ar l ?oi?tqr 0 g;i
i = digit to
i ®] ! 1F | divided).
D] : [E-vr]
l 0A | Move O to l 21
L Ar—M 1 J gdBdg?:sses M— Ar—M
)] 0B | oo
Carry out decimal Execute CAL
[Yrei=vr 1‘ aCon(\’/t;rsion of DEM— {CAL
D j answer; if DEM— puts 1
\ overflow, move in first digit,
1 to next lower it does not add
address. it).
L 8—Yr j |
l 14 ! . Yr—1-—-Yr
M—Ar | Shore frt l 2
igit o
! 15 ‘r dividend in | M—ar Il
ArBr I Br. %
< | YES
le_Zr W NO
16
If CAL DEM—
L Svr Il } Move last £ but1in next
8 ividend — Al | address —
L) e | o) e
M—Ar O Ar. 1, restore lower
| address
L [Ar“li = first digit)
to O.

-133-

to divisor (BA).

29 I —— 4E
AL CHNG | AP F—Ar 1 Deduct 1
u CAL CHN ‘I } L qu | from first
l 28 | Get pointer to — 50 [d!9!;°fd
M+Ar—m 5C from Yr', 1 ArZBr i dl\s/tlofg .
from Ar’, get Yrzr J g’r rotarn
Result is 5C (= lower =) 1529
decimal- g!g!t.of '
converted. vision
count), add 1.
Yr—1-Yr I Y
1 20 [M—Ar 1
| Yr+1--Yr j »
| 2F | Restore Yr [E—vr || Add
m— divisor
ArZ8r {reduced by 1 4 | pack into
Yr2zZr 2;ev:$]uzd) M+ Ar—M | last digit
mmand), S
1 30 | enforce FLAG . i)tthmd.end
— 1| =1, return Result is IS re
ArZBr ot decimal- stores the
- division ted remainder)
Yr2zr counter to Ar. corrected. :
: 3
{{_ caLchnG ! Yr-1-vYr
— ! % 0
Move
——— O—Ar |
= £ Get stored L | to 5D
ArZBr | first digit & | (= first
Yroze ' of dividend [A digit of
from Br. remainder).
3A YES
Ar +0% Il CAL ENDS] Generate
- NO If first digit = i3 | CND
v | already O (that | g?rugP'
L o] 'is, too much g
L deducted now),
set pointer

No.77 Add Together Decimal Values in Memory

With this program, various decimal numbers can be added.

PROGRAM
address | command| machine address |command] machine
00 TIA 8 10 [JUMP F A) Key in the program and check it.
01 <O 0 1E <O» 0
02 |TlY A TE <P F B) Load data {0-9) into addresses 50-5B.
03 C> C 20 TIY A
04 |AM 4 21 | F Example:
05 AlY B 22 MA 5 50|51|62|53]/54|55|56|57|58|59]|5A|58|address
06 < 1 23 [AO 1 71 4] 3] o] 5] 8] 3] 4| 8] 9| 7] 2]data
o7 cly O 24 CH 2
08 |[<o» 0 25 |Tiv | A = WG G e Y5 e M) & —————————
08 JUMP F 26 <> O
OA |<O» 0 27 1MA 5 C) Press RESET, 1, BRUN to start the program. The answer
o8 | 4 o8 TIY A will then be displayed like this:—
oc [Tivy | A 29 [F 4218427 @ ANSWER69
ecoee: 0
oD C> C 2A AM 4 ———— . :
OE MA 5 2B {C/—\L E ¢ 6 9
OF [CY 3 2C tOsPRY D D) Then read out the value from memory:—
10 MA 5 20 CH 2 PR fa . PN . ')
11 | Ty A 2E |[AM 4 = Ho] o] = * o ,
12 |<F F 2F |JumP| F = ceccoce [b
13 CAL E 30 (27 2 address|SD|SE|5F] ’ C =
answerl O] 6| 9

14 |loem+| F 31 <P F w5 .o q
15 TIY A _
16 C> C
17 MA 5
18 AlA 9
18 <1 1
1A AM 4
1B |CIA C

C

1 [i34 | '

FLOWCHART

(START)
i Q—Ar “-9_0] |

[“C-Yr

|

0E

| M—Ar

| Move 0 to 5C/5D/5E/5F.

Get contents of 5C (= count).

oF J

[arzvr

I

10

L M—Ar.

!

11

[PP

I

M+ ArSM
Decimal
canversion
. is carried
" outon
the resuit,
Y~ q=¥Yr

Move count to Yr, get con-
tents of pointed address, add
to 5F with decimal conver-
sion.

Get count (from 5C), add
1, store in 5C, test for
count# C:

Yes — return to OF (to get
contents of next address).
No — go to next step.

Get last digit of answer
from 5F, display on HEX.
LED.

Store last digit & pointer
in Br/Zr.

Move contents of 5D (first
digit) to 5F.

[~

—135-

——— 28
L caLosPrR]}
l 20

ArtBr
Yro2zr ‘
1 %€
[ar-m]
oF

Display first and middle
digits of answer on binary
LEDs.

Restore last digit to Ar,
pointer to Yr, store last
digit at pointed address
(5F), STOP.

No.78 Calculate Decimal Averages in Memory

This program figures the average of 10 numbers.

PROGRAM A) Key in the program and check it.
machine machine
adcgegs C?T;m,:”d CCge ad:rgs ?Z;ma"d C%’e B) Load decimal numbers into 50/59.
01 <O> 0 1TE [MA 5 Example:
02 |TIY A TFOJATA 8 50|/51/52|53/54/55|56/57/58]|59]
03 & C 20 |8 B 31 4] 7, 11 9| 3l 5] 6] 8 2]
04 | AM 4 21 JUMP F
05 [|TIY A 22 <2 2 (=) 'g@ @@ E%@ S g@ R — — — — —
06 |<B& B 23 <D D
07 |Am 4 24 | TIvy A C) Press RESET, 1, RUN to start the program.
08 |TiY A 25 <& B o
oo |ens A SO N . D) 'épleDanswer.ls displayed on the HEX. LED |§ and the
oA | am 4 57 | a0) sound is generated.
0B |CY 3 28 [CA[— E The idea of this program is to obtain a total of a series of
0C |MA 5 29 ENDS 7 numbers and divide it by the number of numbers in the series,
OD | TiY A 2A | JUMP F discarding any remainder. However, we do not have enough
0OE o) C 2B | (& 2 room to do all that; so this program takes advantage of the
OF CAL £ o |y A fact that when the number of numbers is 10 the average is the
10 [DEM+ F oD | TIY A first digit of the total value — we put an imaginary decimal
11 Ty A P RN B point bgtween the' f_irst and Iasf[digits. One is added to the
12 leas A oF | ma 5 average if the last digit equals or is greater than 5. !
13 |MA 5 30 [ATA 9
14 {ATA 9 31 <1 1
15 <10 1 32 |CH 2
16 | AM 4 33 | CH 2
17 ClA C 34 JUMP F
18 <A A 35 |2 2
18 [JUMP F 36 <D 7
TA <O 0
1B B> B
1C | TIY A

FLOWCHART

C_ ST?RT

| O—Ar

!

| C—Yr

|

l "Ar—M

I
[8-—Yr]
| W
| Ar—M |

I %

| A—Yr |

I} oA

L Ar--m I

Move O to addresses BA/
5B/5C.

], 1

08 !
L

ArZYr |

J 0C

| M—sAr |

C-+Yr l

1 oF

M+ Ar—M

Result is
decimal-
converted.

Yr—1-Yr

L

Almost the same as program
77,0F-14,

In 77, the total was held
in 5F; here it is held in 5C.

Display on HEX. LED, gen-

) CAL ENDS I erate END sound, STOP.

1 -

* If Yes — go to 2D.

IF No — go to next step.

~137-

[_ A-Yr l
l 13 | Almost the same as 77,
{ M—Ar 15-1A,
! 14 | Count for number of items
L Ar+1—Ar is at 5A (in 77 was at 5C).
I 161
Ar—M
‘], 20
C—Yr After adding all items, get l B—Yr j
contents of 5C (= remaind- If carry at 1F (binary § or
l 1E er), reduce by 5, test if carry l 20 more + binary B) — get first
L M—Ar _J | (since average s 1/10 of L M—Ar || digit from 58, add 1 10
l 1,: total use, value of remainder l 30 | answer.
in 5C will determine whether
Ar+B—sAr 1o round up): * | Ar+1-—>Ar]
32
car! pad
<FW/\ ES /:r:?
rzZr
Bvr l Enforce FLAG_ = 1 before
l ’ Get first digit of answer = A8 % | returning to main program.
2 I average = contents of 5B. rBr
L M—Ar Yroze
2 ! !
| Ar—0p B
T Qgi NOTE: The number to the right of the

imaginary decimal point is a DECIMAL
FRACTION. In this program, if the
decimal fraction is 5 or more we ROUND
it UP by adding 1 to the average. If it is
4 or less, we ignore it.

No.79 Transmit Morse Code from Data stored in Memory

This program reads codes from b0-6F, converts them into
Morse, and generates Morse code sounds.
Refer to program 7 for International Morse Code symbols.

PROGRAM
address { command| machine address | command | machine
00 TILY A 21 CH 2
01 <O> 0 22 TIA 8
02 [MA 5 23 <65 6
03 JCIA C 24 [CAL. E
04 |<F> F 25 TIMR C
05 | JUMP F 26 |CH 2
06 |<0>» 0 27 AlY 8
07 |<F> F 28 <15 1
08 | TIA 8 29 |MA 5
09 (<& 9 2A | JUMP F
OA [CAL E 2B | <0> 0
0B TIMR C 2C <3 3
0C |[JUMP F 2D [CAl_ £
0D |<O» 0 2E SIFT 6
OE |[<O> 0 2F JUMP F
OF [CIA C 30 [<3> 3
10 j<BE> £ 31 | <D> D
11 JUMP F 32 {CH 2
12 <1 1 33 | TtHA 8
13 <70 7 34 <2 2
14 JUMP F 35 JUMP F
15 <1 1 36 |<2> 2
16 |[<45 4 37 |<45 4
17 [CAL_ E 38 [CAL E
18 SIFT 6 39 LONS A
19 | JUMP F 3A | JUMP F
1A <2 2 3B <2 2
1B [<D> D 3C <75 7
1C [CAL E 30 [CAL E
10 SIFT 6 3E SHTS e
1E JUMP F 3F JUMP F
1 |1<3> 3 40 <25 2
20 <& 8 41 7> 7

code morse

— short sound

— long sound

— space between characters
— space between words

— end

— repeat

MMWwN =0

b These codes are stored at 50-5F.

Word/phrase Spaces End
Example: Morse 5 data
SOS ™ code (s2sO———Oeer (1)
code: S 0 S ']
Example:

Address| 50 51 52 53 54 55 5 5 58 53 5A 58
Data [0 0 0 2 11 1 2 0 0 0 E

You will hear the Morse code for S O S once when the '
program is run.

A) Load the program and Morse code and check it.

B) Press RESET, 1, RUN to start the program.

-138—

FLOWCHART
(_START)
|

o

L O--Yr]
}

Move contents of address

| 50 to Ar.

1 notF, test for Ar £ E:
No — STOP (end of mes-
| sage).

" Yes —goto 17.

i Shift binary value of Ar
| one place.

i J
L O—Ar ——]

T

[Ceacvm]

s

" Test if Ar# F:

Yes — go to OF,
No — go to next step.

Set timer value = 1 second,
I start timer, return to 00.

. Test if even number:
1

2D

[calsFr

—_l 1 If code even, shift again.

1 Test if first shift gener-
| ated even no.:
! Yes — go to 3D.

Yes — go to 2D.
No — go to next step.

Shift again, test if first
shift generated even num-
ber: *,

J No — go to next step.

Store address pointer in

ArZBr . Store contents of Ar/Yr
| in Br/Zr,

£S Zr, set timer value = 0.3

j j seconds (= character

% space), go to start timer
at 24.

38

1

i

IA [Beeps, go to 27.

I 3D

] ’ If second binary digit of

pu— | Wait for 0.7 seconds
- £ " (= word space).
u CAL TIMR
26
ArZtBr i R
Yroozr | Restore Br/Zr to Ar/Yr.
57

I vrei=vr
‘
I‘ M-+A1

[fs |

Add 1 to pointer, return
to 03.

I 2A ‘I

* Test if first shift generated even number:

Yes — go to 38 (code in memory was 1).
No — go to next step.

-139-

3F | Ar = 0, then code = 0,

SO generate blip.

No.80 Countdown timer (Max. 7 mins. 59 secs.)
©) @
Before running this program, load seconds at addresses 51/52, address | command| machine address |command | machine
and minutes at 50. When the program is run, the display shows 31 CAL £ 41 TIA 8
the period of time left and generates the END sound when 32 {ENDS 7 42 |« g
the time has expired. 33 |uumP = a3 |uume e
PROGRAM ©) ® 34 |3 3 a4 | 1
address | command | machine address | command | machine 35 (3> 3 45 (5> 5
00 |TIY A 19 CAL E 36 |AILA 9 46 AIA 9
01 <O 0 1A [TIMR C 37 < = 47 < =
02 |MA 5 B8 | CH 2 38 | AO 1 48 | AM 4
03 |TlYy A 1C |Cl1A C 39 [JUMP F 49 | CH 2
04 <P F 10 <O 0 3A <D 1 4A | TIA 8
05 | AM 4 1E | JUMP F 3B (<& 6 4B | (> 5
06 | CH 2 1 |3 3 3C |AIA] 4C | JUMP F
| 07 | TI1Y A 20 <62 6 3ID | F 4D <3 3
o8 | 1 21 |ea | e 3E | AM 4 4 | e
l 09 [MA 5 22 CHNG 5 3F {CAL £
OA |TIY A 23 JCIA C 40 CHNG 5
0B <= E 24 0> 0 A) Key in the program and check it.
oC | AM 4 25 [JUMP F
0D [CAL E 26 <3 3 B) Load data into addresses 50/51/52.)
OE CHNG 5 27 e C Example: &= 'ﬂ'@ @@ = 5;‘!@ &) ",j@) l'@ &
OF TIA 8 28 CH 2 No more than 7 minutes and 59 seconds can be stored
10 <8 9 29 JCIA C because the first digit on the binary LEDs cannot display
11 CH 2 2A <O 0 more than 7 (111).
12 | Ty A 2B | JUMP F C) Press RESET, 1, RUN to start the program.
13 <25 2 2C <4 4 1.8 4 2 7 = -— Decreases
14 [maA 5 20 |6 6 e e . Gl--—- B once per
15 |AO 1 2€ [AO 1 T seconds
16 {CAL £ = {CAL = 7 minutes 3 s 9 seconds
17 DSPR D 30 DSPR O The time value is reduced second by second from the
18 ICH 2 ~140- starting time set under B above until zero is reached.

FLOWCHART

(_START
! i
[O-yr |
! 2
{ M—Ar | | Move contents of 50 to 5F
l 0 1 (rlninutes) for binary dis-
: " play.
I F—Yr i
] %
| Ar—M |
I} %
ArZ2Br i
. Store minutes in Br.
Yrzr '
|
L 1-Yr _I :
I 0 |
I M-—Ar I ‘ Move first digit of seconds
l A . to BE for binary display.
L E-mYr 1 :
1 9C
L Ar—M 1 ‘
‘I 0 St i & f
;. Store minutes irst digi
l CAL fHNG —I ¢ of seconds in Ar'/B'rr's. ot
UF
[S—Ar |
1 i . Set timer value = 1 second
Ar8r I store in Br.
Yr2zr '

2

* Test for # 0: Yes — go 1o 3C,
No — go to next step.

-l 12
L . 2-Yr I
] 1

P

| Ar+F—ar
!

36
i
38

I

J Get contents of 52 (last
[M—Ar { digit of seconds), display [Ar—0p
- 1<h E on HEX. LED. l
Ar—0p I J 3C
" T— —) [ar+Fear]
! Display binary tent:
CAL DSPR | J of BR/GE. contents 3E
T " | Ar—M]

Ar3Br
Yr2zZr

! 19

[cacmmr]

! 18

Ar2Br
Yrlir

Get timer value from Br
start timer.

Return timer value to Br
(also restore last digit of
seconds to Ar).

|

3F

|l

CAL CHNG]

41

[caLchng ™]

Test for last digit of
secs. # O:
Yes — go to 36.

No — go to next step.

ArZ2gBr
Yrz2zr

If last digit of seconds =
0, get first digit of sec-
onds. from Ar’, test for #
0:*,

[S—Ar]
— a6
| Ar + F—Ar |
1 a8
[Ar—M |
] a9
ArZBr
Yr22r
! 1A
l S—Ar

| B

| Ar—Qp i

1 2F

I cacoser]

L

If first digit of seconds =
0, get minutes from Br,
test for # 0:

Yes — go to 46,

No — display 0 on HEX.
LED & on binary L.EDs.

-141 —

3 31
[caLenos]
3 AE—

|
!
y If last digit of sec-
onds # 0O, deduct 1,

|
i return to 16.

|
| If first digit of sec-

ponds # 0, deduct 1,
‘ store in 51,

onds in Ar’.

l Store first digit of sec-
|
|

! Set last digit of sec-
f onds =9, return to 15.

If minutes # 0, de-
duct 1, store in 50.

in Br, set first digit
| of seconds to 5, re-
‘ turn to 3E.

’ Store revised minutes

‘ Generate END sound,
J STOP,

4
i
!
|

No.81 Turn on Binary LEDs with accompanying musical notes

CAL SUND is used to generate notes.

CAL SUND COMMAND (CALI SoUND}

This command plays a note at a pitch that is determined by the
contents of Ar. All notes are the same length. When a note is
played, binary LED 3 is turned on.

Value of Ar 0 12 345 6 789 ABCDE F
silent ti re fa la do mi sol

la do mi sol ti re fa

Note

silent

A) Key in the program and check it.
B) Press RESET, 1, RUN to start the program.

C) If the starting pitch at 04 is changed, the program will
play a different range of notes.

—142-

PROGRAM
address | command | mashine address [command | machine

00 |TIA 8 1C [CAL E
01 <O> 0 10 SUND B
02 CH 2 1& AlA 9
03 |TIA 8 1F 1< F
04 (3> 3 20 CH 2
05 TIY A 2 [CAL E
06 0> 0 22 TIMR C
07 [CAL E 23 CH 2
08 SETR 1 24 {CAL E
09 {CAL E 25 RSTR 2
OA SUND B 26 AlY B8
OB ATA 9 27 <F> F
oc |« 1 28 |civ D
00D CH 2 29 o) 0
OE [CAL E 2A JUMP F
OF ['TIMR C 2B < 1
10 CH 2 2C <A A
11 rCAL E 20 JUMP F
12 |lRsTR| 2 28 [<0» "0
13 AlY B 2F (7> 7
14 <12 1

15 Cly D

16 6> 6

17 JUMP F

18 |[<O» 0

19 7> 7

1A [CAL E

1B SETR 1

FLOWCHART

(. S8TART)

00
L O—Ar] i Move [cal nvr
l z 10 to J' .
ArZBr ‘ Br. e ACTBE
YPERZE ERE . (onr it
! 03 1
[, 3—iAr llg ?’f;t [calrsTr
05 | note
[O—vr]| =do. R
¥ !

!

“CAL SETR

|

Ar+1-—Ar

]

09

CAL SUND |
B

|

D

! p

Ar,28r
Yr2Zr ‘

L 1

I ca.seTr™

I

]

1A
] ipointer
=6,

[__caL stnp

Jhd

Il

£ | Re

Ar+F-sAr,

duce
.2 [pointer

L

20 by 1.

L

[
S

AF:BT‘ !
yrzzr | Get
! timer
l 2" i value
L catnvr] }fBrom
' Br.
l 23 | start
ArZBr i timer
Yoz 5
2 s;“f'”
s] e
1 26 . LED,
VrdEay 1 . deduct
: i1 from
28 YES‘ pointer

-143 -

Test for Yr #
0.

Yes — return
to 20.

No — return
to 07 to
start R to

L movement
again.

(a) Store pitch in Br, get timer value.
(b} Add 1 to pointer.
(c) If pointer =6, turn on LED, play note.

No.82 Morse Code Input Controller

This program ensures that valid Morse signals are generated by
enforcing the use of two keys only, 0 for a short sound, 1 for
a long sound.

Short sound: [0 Long sound: ¥[0]

PROGRAM
address |command | machine
00 |KA 0
01 JUMP F
02 <O 0
03 <O 0
04 JCIA C
05 |[<O> 0
06 | JUMP F
07 <O 0
08 B =
09 [CA{_ &
OA SHTS 9
0B |CIA C
0C <1 1
00 | JUMP F
OE <G 0
OF <O 0
10 [C/-\L E
11 LONS A
12 | JUMP F
13 [<O» 0
14 <O 0

FLOWCHART
(START)
0 !
| K—Ar |

e
. = VES
I caLions |

! Wait for key

i to be pressed.

If key =0,
BLIP, return
for next
input.

\‘ Ifkey =1,
BEEP, return
| for next

" input.

A) Key in the program and check it.

B) Press RESET, 1, RUN to start the program.

L
C) Now press either@@= short sound or 'ia»@= long sound

Try it — see how easy it is to generate Morse.

Morse code input controller

This program shows in a limited way what a micro can
do to reduce the chances of operator error {meaning
pressing the incorrect key — for example if we pressed
(2) when we meant to press (1)).

Only 0 and 1 keys are relevant in this program; other
keys do not generate any sound. But there is no provi-
sion for automatic character and word spaces or for end
and repeat codes.

Examine the list of codes in program no. 79 again.
Perhaps you could improve program no. 82 by making
provisions for the extra codes. Also consider waiting for
a key to be released before looking for the next one;
is that a good idea that you could incorporate into this
program ? Can you think of any other ideas that would

help to make Morse transmission as easy and accurate
as possible?

No.83 Metronome

A metronome gives a steady beat at different speeds
and in different rhythms. In this program, the con-
tents of 50 determine the rhythm and 51, the speed.

A) Key in the program and check it.

B) Load data into 50 (beats per bar) and into 51

PROGRAM
address |command | machine, address | command | machine

00 ITIY A 16 [CAL E
01 <O 0 17 TIMR C
0z |MA 5 18 |CH 2
03 |CIA C 19 |ATA 9
04 <O O TA [P F
05 | JUMP F 1B JCIA C
06 <O o 1C <O 0
07 B B 10 | JUMP F
08 | JUMP F TE 1< 1
09 <O o 1 <O 0]
OA |<O> 0 20 | JUMP F
0B |CIA C 21 <O> 0
oC 1> 1 22 |<O> 0
0D | JUMP F 23 |CH 2
0t [<2 2 24 | TIA 8
OF (3 3 25 <A A
10 |CH 2 26 CAL E
11 [CAL E 27 SUND B
12 SHTS S 28 | JUMP F
13 | TIY A 29 [< 1
14 1< 1 2A (3 3
195 [IMA 5

{speed):

v 5 i ey, 0o (i
o) 'g@ @@ (o) LI,@ @ b)

C) Press RESET, 1, RUN to start the program.

FLOWCHART
C START)

I
I O—Yr OO] L\)one no- gf ArZBr 3 Restore no. of
tezﬁsr pg " ?gr R \ beats per bar
1 2 ,#Oo, . 188 Yre2zr to Ar.
{ M—Ar | | No—return to] 1]
i00. r At F—Ar \ Deduct 1 from
Yes —go to OB. I Ar, test for
18 Ar# 0. (b)
Test Ar# 1: Ar+ 0%
Yes—go to 23. YES N3
No — next step.
3 23
(a) pars .
ArZBr . Store beats per
! Store contents Yr2Zzr I bar in Br.
i Arin Br, 1 24
I A—Ar I i b (
| BLIP (ordinary — | Play do (=
" CAL SHTS | beat). l 2 | first beat of
13 1 " CAL SUND i bar),go to 13.
I
I 1—-Yr I i o8 |
1 15 ! Get timer value
—Ar f 1, start
I M 3 tir;rgrS »sta {a) If No — go to next step {if
: ’ one beat per bar all beats
I caLtmr | sound the same).
| {b) Testif Ar# O:

—145-

Yes — go to ordinary beat.
No — go to 00 (start new bar).

No.84 Guessing Game: Odd/Even Numbers

In this program the (0) and (1) keys are pressed in turn to
select two random numbers. If the sum of these numbers is
an odd number you will hear two long notes; if even, one long

note.

PROGRAM
address | command [maghine
00 AlY B
01 <1 g
02 KA 0
03 JUMP F
04 <CO» O
05 <O 0
06 CY 3
07 Ccly D
08 <O 0
098 JUMP F~
OA <O> 0
oB <O 0
oC [CAL E
oD RSTO 0
OE TIY A
OF <O 0
10 AM 4
11 [CAL E
12 SHTS 9
13 AlY B
14 <1> 1
15 KA 0
16 JUMP F
17 <12 1
18 (3> 3

address |command | mashine
19 CY 3
1A cty D
1B 1> 1
1C JUMP F
10 <15 1
TE (3 3
1F TIY A
20 <O 0
21 M+ 6
22 AM 4
23 [CAL E
24 SIFT 6
25 JUMP F
26 (2 2
27 A A
28 {CAL E
29 LONS A
2A {CAL E
28 LONS A
2C MA 5
2D | AO 1
2E JUMP F
2F <CO» 0
30 <O 0

FLOWCHART If key
pressed,
(START) move random
,, ho.to Ar,
l 20 3 = key value to
[vrd deave]) . I Ar2ye)y, test for
o Go on addnjg a ! key value # 1:
< 1to Yruntil YES Yes—return
| KA]l akeys 1T == 113
. | bressed. NO (invalid key).
NO o3 v = No—go to
. Test for key L O‘i T J | next step.
YES (5 | pressed 2|
! pyv— l “ No—return I T AT] ‘ Add current
| to 0. : ¢ random no.
YES 07 Yes—store 1 22+ to (60},
W _contents Ar [Ar—sit I i store in 50.
inYr. —
NO__ 9C iTestYr#o: | 2 UseCAL
ﬂ CAL BSTO]! Yes—return ﬂ CAL SIFT]! SIFT to test
1 e o 00. ~ifeven (a).
- No—turn off YES
[_O—yr o] | HEX. LED.
F
1~ g 2 [Store value
| Ar— | generated :
s . . BEEP (2
l 11 inYrin 50. i | BEEPS in
[cacshts ™]sur [CTAcong ™] | total if |
i odd no.}.
13 I < | co
I ver1=vr || add 110 [(M—Ar | .
L Yrto 1 0 D|spFl‘ay the
‘ - turn
generate Ar—0p | no. e
‘ another l I ' 10 00.
random no.
{a) Use CALSIFT to
test if even:
YES If No — BEEP
If Yes — skip to
2A.

—-l46-

A) Key in the program and check it.

B) Press RESET, 1, RUN to start. Program will wait for a key

10 be pressed.

C) Press (0) to get the first number; a sound is generated.
Press (1) to get the second random number. If the sum of
the two numbers is even you will hear just one long sound.
If the sum is odd you will hear two long sounds. The game
may be repeated as often as you like by pressing {0) and

(1) in turn.

Is the figure displayed on the HEX. LED supposed to be

numbers?

the sum—? Do you ever know the identity of the random

No.85 Guessing Game: Large or Small?

In this program you have to guess whether a number in mem-
ory is greater than or less than 8. If you think it is greater you
must press (1); if smaller you press (0). If you are correct
you will hear the END sound; otherwise the ERROR sound
will be heard.

PROGRAM
address fcommand | machine address |command | machine

00 | TIY A 17 <O 0
01 <O> 0 18 2> 2
02 MA 5 198 JUMP F
03 AlTA 9 TA 1< 1
04 (8> 8 1B <% 5
0b JUMP F 1C [CAL E
06 <2 2 10 ERRS 8
07 <1 1 1E JUMP F
08 KA 0 TF <1 1
09 JUMP F 20 <3 3
OA <O 0 21 KA 0
0B <8 8 22 JUMP F
0C |CIA C 23 (2> 2
0D (<O 0 24 1> 1
0E JUMP F 25 CIlA C
OF <1 1 26 <12 1
10 [<C> C 27 JUMP F
11 [CAL E 28 [1
12 ENDS 7 29 <O C
13 ALY B8 2A | JUMP F
14 1< 1 28 <1 1
15 KA 0 2C < 1
16 JUMP F

A) Key in the program and check it.
B) Load various numbers into memory at 50-bF.
C) Press RESET, 1, RUN to start the program.

D) Now press either 1 (if you think the number in memory is
8 or greater than 8), or press O if less than 8. The number
you are guessing is the number in the memory currently
pointed to. When you have guessed (correctly or incorrect-
ly}, the program points to the next address and Yyou can
try again. When you have tried to guess what is in 5F the
program points to 50 once more. Make the game more
difficult by asking somebody else to load the numbers

for youl
FLOWCHART
C START)
00
[O l } ggt pointer to

> ‘ 02
| M—Ar]

- - ‘ Test for contents of pointed

l 03 address equal or greater than 8:

[Ar+8-—sAr- l Yes — go to 21.
No — go to next step.

Wait for ke . .
pressed;wh:n | Wait until
pressed test | key pressed.
if (0),
’f;l((:)—go to Test for (1):
< No —ERROR
Yes — END i sound.
sound. Yes— END
sound.

¥
[cacerms '
} Add 1 to l
pointer.

Wait until
key released,

16 ‘ then return
to 02.

h::’::;‘ ——

No0.86 Guess the Number Game

One of the addresses 50-6F has O in it — this is the trap. When
the game starts and you press a key, the program stops at a
random address. |f the sum of the contents of that address
and the key that you pressed equals F you win and hear the
END sound. If it does not, the program stops at the address
pointed to by the previous sum. If you land in the TRAP
(the address containing 0), you lose the game and hear
ERROR.

A) Key in the program and check it.

B) Load various numbers into 50-5F including a O in one of
them, for example:

= Y5 <) = 45 = iJ @ .3 e

C) Press RESET, 1, RUN to start. At first the HEX. LED will
be off, but as soon as any key is pressed an address select-
ed at random will be displayed. Now press keys until you
hit the winning combination — or fall into the trap.

D) If the sum is F, you hear the END sound. If the address
has O in it, you hear the error sound.

PROGRAM
address |command | machine address |command | machine

00 {AlY B 17 > F
01 <1 1 18 JUMP F
02 KA 0 19 (27 2
03 [|JUMP F 1A | <O 0
04 0> 0 18 [CAL E
0% {<O> 0 1C ENDS 7
06 KA 0 10 | JUMP F
07 JUMP F TE K1 1
08 |<KO> 0 18 <D D
09 |<& 6 20 MA 5
OA KA 0 21 ClIA C
0B JUMP F 22 <O» ¢
oCc <1 ’| 23 JUMP F
0D [<1 ’| 24 <O» 0
)= JUMP F 25 (67 6
OF |<0> o) 26 {CAL E
10 (A A 27 ERRS 8
11 [CAL E 28 JUMP F
12 SHTS 9 29 (27 2
13 | M+ 6 2A 148> 8
14 AO]

15 CY 3

16 Cly D

FLOWCHART
(. START)
—‘—"1 00 16 Test for Yr# F.
| Yr+1—Yr 1 Yes—go to 20.
Generate a No-—go to next
— random step.
| K—eAr - I 1 number in CAL ENDS]
B - ° | END sound
sound,
No——Key down T —= } sTop.
%
| K=>Ar | o 2 Testif
- Wait until [VYT l contents of
07 key pressed. address # 0.
"W " 27 Yes—go to
NO 06. *
‘ >y YES oa VES Ar+O% No— ERROR
l K=Ar .) Wait until NO 2% sound,
ait unti P
08 key released. ﬂ CAL ERRS | STO

K. D —
NO I

11
I causHrs]

| Blip.

[M+Ar—Ar] | Add key value
l " to contents
of pointed
I Ar—0p I [memory,
I 15 \ displav HEX.
I AR "]] \L{ED,store in
Py Yl r

-148—

No.87 Reflex Tester

4218421 Ppoint
@0 O : o 7 points whgn all
This game is for two players. The middle binary LED blinks — R3 your LEDs light.

l
on and off. When the LED goes off, each player must try to Score for (0), light, score for (3)

press their key first before it comes back on(use 0 and 3 keys).
If a player is successful, he scores a point. The binary LEDs

. . , in the program and check it.
light to keep score. The first person to score 7 (all three binary A) Key in prog

LEDs lit) wins. B) Press RESET, 1, RUN to start the program.
But be careful! If you press your key at the wrong time {(while A sound is generated each time a player presses O or 3.
the middle LED is still lit), then you lose whatever points you When the game is over, the sound continues until you press
have scored. Your binary LEDs that were lit will go off. RESET.

' C) To play again, press RESET, 1, RUN.

PROGRAM @) ©) @
address | command| machine address | command | machine address | command| machine address |command | machine
00 [TIA 8 14 | TIY A 28 |CIA C 3C |CIA C
01 <O 0 15 (3> 3 29 (3 3 3D <> 7
02 |Tity A 16 |MA 5 2A | JUMP F 3 |JUMP F
03 <F> = 17 [CAL E 2B (<4 4 3F 1> 1
04 AM 4 18 CMPL 4 2C <4 4 40 <O 0
05 TIY A 19 AM 4 2D |MA S 41 JUMP F
06 (B> E 1A rCAL E 2E TIY A 42 (3> 3
07 |AM 4 18 [lerT | 6 2F | e 43 <Ay A
08 TIY A 1C [CAL E 30 Cla C 44 ClIA C
09 (3> 3 1D SETR 1 31 <O> 0 45 <O> 0
OA AM 4 1€ TIA 8 32 JUMP F 46 JUMP F
0B ALY B 1F <O 0 33 |3 3 47 {3 3
0C <> F 20 [CAL E 34 (6> 6 48 <8 8
oD JUMP F 21 TIMR C 35 M— 7 49 MA 5
OE 1> 1 22 KA 0 36 M— 7 4A TIY A
OF (B> E 23 JUMP F 37 AM 4 48 < F
10 [CAL E 24 <O 0 38 [CAL E 4C | JUMP F
11 DSPR D 25 B> B 398 DSPR D) 4D (3 3
12 [CAL E 26 | TIY A 3A [CAL E 48 |<O 0

13 | ITivR C 27 <3 3 _140- 38 |lsHTS| O

FLOWCHART

(C_START)
! ® ———— 17
| O—Ar] [caLcwmel]
! ®) 9
[F—yr] [Ar—M]
i 1 o l 1A
| Ar—M’ | i Move 0 to 5E/5F.] CAL SIFT]
] % 1 C
(E->Yr] { caLseTR]
| 07 ! 1€
[~Ar—M] | O-+Ar
| 8] 2
l 3-vyr | 1 I cAL TMR]
l 0A Move 0 to 53. , l 2
Ar—M] l | K—Ar 1
08 IR 3
| YeaFovr] No=—Key downT===
0D vES 2
Y = | 3-vr |

I caLospr]|} Display score.
12
I caL mmR | |} Pause.
14
| 3-vr] l
l 16 Move contents of 53 to Ar.
| M—Ar]]

D NO

t M—AP |
1 2E

i E=Yr]
-

} Move complement of Ar to
Ar.

} Move complement to 53
(53 contains either O or F).

If Ar=0, turn on LED.

‘ Pause 0.1 seconds.

|

J Check for key input.

} Set pointer to 53.

} Check for key # 3 (a).

l M—Ar—Ar]
! 3
[Ar— |
—
|[CAL DSPR |
(.__—
CAL SHTS

} I (3), get contents of 53.

} Set pointer to BE (= score
for (3)).

1

—
%

M——’Ar

4A
| F—oYr |
I

{a) Check for key # 3:
Yes — go to 44.
No — go to next step.

—-150—-

Test for Ar# 0:

Yes — add 1 to Ar (Ar
contains F).

No—set score to O {first
deduction puts current
score in Ar; second
deduction deducts cur-
rent score from current
score).

} Display scores.

}Blip (if end of game
continue blipping).

} Check for Ar # 7:
Yes — return to 10.
No — return to 3A for
another blip.

Check for {(0):
} No — go to 38.
Yes — go to next step.

[
}Get contents of 53 (0
or F).)

}Set pointer to S5F (=
score for (0)).

No.88 "Blackjack” Card Game

You may imagine yourself in a casino as you play this program
because it is a variation of the popular card game called
Blackjack. The first key you press selects your “blackjack”
or end result card (which you must guess). It can be any num-
ber O-F. The next key you press chooses your first “hit” card
which is displayed on the HEX. LED.

The idea in this version of Blackjack is to keep drawing cards
until the total value is equal to or exceeds your “‘blackjack”
card without exceeding the limit—F. Each time you draw a
card (press a key), a new total is displayed. When you think
your total is equal to or greater than your “blackjack” card,
press O to end the game. If you are correct, you will hear the
END sound. If not (or if you have exceeded the F limit), you
will hear the ERROR sound.

PROGRAM @ e
address command mgggg‘e address | command mgé:géne
00 ALY B 11 <0 0
01 <1 1 12 (D C
02 [KA 0 13 |AIY B
03 JUMP F 14 1> 1
04 qo) 0 15 KA 0
05 [0 16 JUMP F
06 CY 3 17 1< 1
07 TI1Y A 18 (3> 3
08 <O> 0 10 CY 3
09 AM 4 1A TIY A
OA {CAL E 18 1 1
OB SHTS 9 1C AM 4
0C | KA 0 10 | AO 1
0D JUMP F 1E CAL =
OE 1> 1 1F [SHTS 9
OF (3> 3 20 KA 0
10 JUMP F 21 JUMP F
-151 —

©) @

address | command| machine address [command | Machine
22 <25 2 39 <A A
23 | < 7 3A [CAL E
24 | JUMP F 38 ENDS 7
25 (2> 2 3C | JUMP F
26 <O 0] 3D <3 3
27 AlY B 3E KO C
28 <1 1 3F | CY 3
29 KA 0 40 | TIY A
2A | JUMP F 41 <15 1
2B <2 2 42 M+ 6
2C <> 7 43 | JUMP F
2D |CI1A C 44 <4 4
2E [<G> 0 45 1A A
2F | JUMP F 46 | AM 4
30 <3 3 47 | JUMP F
31 <F> F 48 <1 d
32 |CY 3 49 <D O
33 [MA 5 4A [CAL E
34 | Tty A 48 ERRS 8
35 <1 1 4C { JUMP F
36 |M- 7 40 <4 4
37 JUMP = 4E KO C
38 |<4> 4

A) Key in the program and check it.

B) Press RESET, 1, RUN to start the program.

C) The first key pressed ““draws” the “blackjack” card (no
display). The second key pressed draws your first card
which displays on the HEX. LED. The value of the end
resuit card is stored in 50; the sum of the “hit" cards is
stored in b1.

D) Press RESET, 1, RUN to play again.

FLOWCHART

(C_START

D,

0

S L s

!

LK AP

ArgYe]
i o
I O-»Yr i

YES
1 13
1 15
K,——'A{‘]

Generate random num-
bers to determine
“blackjack’’ card.

’ When key pressed, store
‘ random no. in 50 (end
result).

Blip.
Wait for key release.
\ Generate random num-

| bers 10 determine first
t '"hit" card.

|], 19

When key pressed, store
random no. in 51 (hit).

l Compare ‘“'blackjack’’

[with sum of “hits"".

* Game lost.

] 4A
. caemrrs]|

———

| Ar2yYr |
] 1A ’
I) ‘fﬂ-ﬂr ; l
! 1C
mw]
1D]
e
] 1E

. CAL SHTS

{ 2

| _K—Ar

U

I vesayr
1
|
|

Display sum of ‘hijt”
cards.

Blip.

Wait for key release.

Generate random num-
bers to determine any
other cards.

Test if (0) pressed to
end game.

} Game won.

ArEYT |
1 10 g g
1f+Yr 1 Add latest card to total.

<
+
P
5
¢
>
=¥

43 i
w } Test if goes over the top
YES | (a).
NO 6

Ar—+M I } Store new total in 51.

47

(a) Test if goes over the top:

If Yes —
“hand”’.

show the

Get end result card.

Yes — go to 4A (error).
No - go to next step.

No.89 “"Make-a-Match” Game

In this game, when a key is pressed the contents of the corre-
sponding address is displayed. You then press another key
and if the second memory has the same contents you win.
Otherwise you lose. It's a game to test your patience!

PROGRAM
address | command| ™ashine address | command| machine

00 KA 0 19 | JUMP F
01, | JUMP F 1A (2> 2
02 <O> 0 1B 7> 7
03 <O 0 1C [CAL E
04 [CAL E 10 ENDS 7
05 SHTS 9 1E MA 5
06 CY 3 1F AO 1
07 [MA 5 20 KA 0
08 |AO 1 21 JUMP F
09 |CY 3 22 <0 0
OA KA 0 23 <O 0
08 JUMP = 24 JUMP F
oC <1 1 25 <2 2
oD <1 1 26 | <0 0
OB | JUMP = 27 [CAL E
OF [<0O> 0 28 ERRS 8
10 <A A 29 JUMP F
11 KA 0 2A <1 1
12 JUMP F 28 {E> E
13 <1 1

14 <1 1

15 CY 3

16 M- 7

17 ClA C

18 <O> 0

A) Key in the program and check it.

B) Load some numbers into 50-5F (some of them must be
the samel!)

Example: 50¢3) 51¢1) 52¢(3> 53<2>
C) Press RE_SET, 1, RUN to start. Then each time one of the

kgys O-F is pressed, the memory contents will be displayed.
D) First key—memory value is displayed.

Second key (different than first)— memory value is com-
pared with first:

it equal, you win (END sound).
if not equal, you lose (ERROR sound).

FLOWCHART
(START)
| Store key
l ” — i value in
I o) i Wait until l AFIW 1(! } \égmpare
JI key pressed. — ~ first value
| M= Ar—Ar] with
17 second. Ilf
3 1 i c ~ notequa
[cacswts 1] 8lip. T AvoT e DOLOA
1 06 NO 1C {error).
{ Arovr]} 5;?::: ilfweir_] CAL -ENDS 1 |} IlEfNegual,
! 71 Get contents ‘ 1€ sound.
[M—Ar] |} of pointed I M-—Ar] | Display
l 8 address = ’ ;/:(I:Lcn)i gf
I Ar—Op J Display L ArOp l memory.
i 0 || contents, ! . o
l ArDYr l | storein Yr. l e AT B 1 Xve:vt until
—_—’l 0A Al J released.
' il | e on NO
08 J key YES
<Koy downy —= released. | >
ERROR
YES NO I cacerms |} ing
3 ik ’
| K—Ar | | wait until
. another
NO 72 i key pressed.
YES

No0.90 Guess a Random Number Game

The first key pressed in this game selects a random number.
You then try to guess which number to add to the random
number to give the answer 0. Keep pressing keys until you
come to the right {or wrong) number. The game ends when
you succeed. But there is a trap — if the sum of the two num-
bers is 8 you hear the ERROR sound. The number of attempts
made is displayed on the HEX, LED.

PROGRAM
address | command mé’gg'ene
00 TIA 8
01 <O> 0
02 CH 2
03 ALY 8
04 1> 1
05 KA 0
06 JUMP F
07 <O» 0
08 [<(3» 3
09 [CAL E
OA SHTS 9
oB |CY 3
0oC TIY A
0D [<O» 0
OE AM 4
OF KA 0
10 JUMP F
11 <1 1
12 (6> 6
13 JUMP F
14 <O 0
15 {F> F
16 KA 0
17 JUMP F
18 <1 1
19 (6> 6

address | command mggg:;e
1A [CAL E
1B SHTS S
1C M+ 6
10 ClA C
1E <O 0
1F JUMP F
20 (2> 2
21 4> 4
22 [CAL E
23 ENDS 7
24 ClA C
25 (8> 8
26 JUMP F
27 (2> 2
28 (B> B8
29 [CAL E
2A ERRS 8
2B CH 2
2C AlA 9
2D 1 1
2E AO 1
2F CH 2
30 JUMP F
31 <CO> 0
32 =P E

A) Key in the program and check it.

B) Press RESET, 1, RUN to start the program.

C) The game begins when any number key is pressed.

FLOWCHART
(START:)
] 0
‘ O=spr] }
1 0
ArZ2Br |
yrozr J

! 0

| Yr+ YT

!

KAr

Move O to Ar
(= no. of

keys pressed).

Store in Br.

Generate
random nos.
in Yr untii
key pressed.

| Blip.

Move random
no. to Ar.

] Store no.
l in 50.

| Wait until

| key released.

I cacswris]}
! 08

| ArYr]]
1 oc

O—vyr]

0 Je——
CET—
—] 0F
| K—Ar]
10

ey down¢ NG

YES

—154—

I K=Ar I Wait until
17 (key pressed.
N
YES 1A
[_cacsAts]} siip.
l 1€ Add key value
| M+ Ar—Ar |} to random
10 no.
W Test for
VES 3 | #0.
2| 1f No—
I cacenos”]’ END sound.
E— 24
A BT | Lot
YES e B | r?s;l;o:‘# 8.
[cacerms | | ERROR
—] 8 '
Ar28r ! If Yes —
- get count
Yr.l_Zr ‘ from Br.
2C
| Ar+1-Ar |} Add 110
l " count.
[Ar—0Op H Display
l count.
ArBr \ Store
count in
Yr2Zr | Br again.

30

—A

No0.91 Guess the Number in 50 Game

In this game you try to guess the number stored at address 50.
If you are correct, you hear the END sound. If your guess is
within two numbers of the correct answer, you will hear two
beeps. I it is a wrong guess, you will hear just a blip. The
HEX. LED shows the number of attempts made.

PROGRAM
address | command} machine address |command | M3chine

00 [TiIY A EIREEE 1
01 < 1 1C | <F> F
02 |TIA 8 1D [CAL E
03 <O 0 1€ |lLONS| A
04 |AM 4 1F [Aa1A 9
05 |TIY A 20 <3 3
06 <O 0 21 |ATA 9
07 |KA 0 22 [2
08 |JUMP| F 23 (CAL E
09 <O 0 24 [WONS| A
0A |5 5 25 |TIY A
0B |M- 7 26 <1 1
oCc |CIA C 27 | MA 5
0D | 0 28 |AIA 9
0E |JyumP| F 29 <1 1
OF (<> 1 2A | AM 4
10 (<67 6 2B |AO 1
11 [CAL E 2C | KA 0
12 |lenps| 7 20 |JumP| F
13 [JumMP| F 2E [0
14 <1 1 2F | <5 5
15 [<3 3 30 |uumpP| F
16 [CAL £ 31 |« 2
17 |lsHTS| 9 32 (KO C
18 [AIA 9

19 [D

1A | JUMP| F ~155-

A} Key in the program and check it.

B) Load a number into address. b0, for example 5 (or better
still get someone else to do it for you):

= M) o[o] o WO &
C) Press RESET, 1, RUN to start the program.

D) Press the key with the value you think is stored in 50.

FLOWCHART

C_S7ART)
0
e 1 - 2 Clear
t _OAr J memory 51. X 2
T " [caCctons] | Beep.
| ———t
T % [Ar+s-ar - |
: 0 if 1
QYT | ; ! 2 ‘ -Z,'ersntolre. °
T el [arre—ar |
T | Wait until
{ key pressed
08
J 2
; 18 Deduct key [cacions] | Beep.
| M—Ar-sAr] I value from 25 l
0 g%ntﬁnts of | 1-YP |
E J equal — l 7
v NG 1w END sound [M—Ar | | A1
: t0
) CAL ENDS = | l 28 number of
— I Ar+ 1—Ar | | attempts,
13 l A display on
r = I HEX. LED.
¥ 10 1 If not equal l ®
[cacsits | Zoeep. L Ar—0p |
; 1 B 2C 2
[Ar+ D->AP] } (a) { K—hr | Wait until
1A 20 | | key released.
< Carry? e N —Key dow
NO YES

(a) Testif 1 or 2 less.

-156—

No.92 Sharpshooter Game

The target light starts at binary LED 6 and moves towards
LED 0. You have to press the key corresponding to the LED
that is turned on at that particular moment. |f you hit it in
time, you win. If not, the target continues moving and when it
gets to the end (0), you hear the ERROR sound.

PROGRAM D)
address | command| machine
00+ | TTA 8
01 (6> 6
02 TiY A
03 |[<O» 0
04 |AM 4
05 |MA 5
06 |CY 3
07 [CAL E
08 SETR 1
09 KA O
OA KA 0
0B | KA 0
0C |KA 0
0D KA 0
OE KA 0
OF [JUMP F
10 (<2 2
11 (3> 3
12 | TLY A
13 <O 0
14 |M- 7
15 |CIA C
16 [<O> 0
17 | JUMP f~

@
address | command mggg'er‘e
18 <27 2
19 A A
1A {CAL E
18 ENDS 7
1C MA 5
10 CY 3
= CAL E
1F {SETR 1
20 JUMP F
2 (2> 2
22 40y 0
23 ALY B
24 <F> =
25 JUMP F
26 0> 0
27 <D 9
28 TIY A
29 <O» 0
2A MA 5
28 CY 3
2C [CAL E
20D RSTR 2
2k KA 0
2F JUMP =

-157-

) &
ad. ress [commang] machine address |command [machine
30 (3> 3 38 JUMP F
31 <5 5 39 <O> 0
32 JUMP F A (2 2
33 2> 2 SB [CAL E
34 <E> E 3C ERRS 8
35 CY 3 30 JUMP ~
36 AlA 9 3E (3> 3
37 |[<F> F 3F [D

A) Key in the program and check it.

B) Press RESET, 1, RUN to start the program. Watch out!
The target appears very quickly.

C) Press the number of the lighted LED — fast!

This game may be played with more than one person. Score
points according to where you hit the target. |f you hit it
right at the start you score 6 points, so if you are fast you
score more.

—_
Movement @ ® ©® @
is from left 6 5 4 13

® o Binary LED
to right. 10

2

FLOWCHART
(_START)
] i
[B Ar | | Set target position to 6. 1 2A
—_;l »], 2 l M—eAr —I ‘ Get contents of 50,

O—=Yr ; O-Yr 1 ?B , moveto Yr.
I T OAI | Store contents of Ar in I T HI 1 ?gduct key value from I vy]
| 50. i | 50.
| Ar—sM | | | M~ Ar—sAr | 1 ’C
T % " i CAL RSTR] | Turn off pointed LED.
o _ — T ,
I T | | Store contents of Ar in NG YEXS " If match. END sound 1
05! ¥Yr. ‘ . ’ { .)
I ArTryr] 1 II CAL ENDS I (hit). 1 Wait until key released.
|
! o/ ! ¢
I caL seTm | | Turn on pointed LED. | M=vAr | |
09 ! { IS R . . .
-y Displa hit position, py i Get current position
| K~ Ar | | Ar YT J i STSp.y I AreZYr | from Yr.
l 0A : 1 € | l %
i “ AT Foh . Deduct 1 from current
I K—Ar | [caL sETR | [T i] position. If position =0,
T = | 1 % ERROR sound, STOP.
i 20 1f not, return to 02.
[K—Ar]! : " Carry? =
| YES
J 0c | Use key input command NO 18
I AT I ‘ instead of timer routine. l . [l CAL ERRS 1
I 90 | Yr+FoYr | |
. If no key pressed, de- D ‘
l KoAr I ‘ m & | duct 1 from pointer.
[K lA OE] 1 veS NO 2%
- A 7 N
= | l or] | | f not waiting any long- NOTE: The program executes a
. 0 I er, set pointer to 50. pause loop at 25. The number of
© R ..
20 times depends upon the position
YES : counter. So the nearer to the

right that the target gets, the
smaller the count and the faster
the movement.

-158-

Y

No.93 Speed Counting in hex
The object of this program is to add two hex numbers together
to equal 0. One number is displayed on the HEX. LED for €) @
only a short time. You must quickly figure out what number address | command | Machire address | command | machine
added to t_he displayed number will equal O (or (1)0000 = 16— 30 CAL E 3B | JUMP F
the carry is .dropped). Then press that key while the original 31 [TIMR C 30 o o
number is still displayed. If you press and hold down the cor- 390 KA 0 3D (DS 2
rect key in time, you score one point. When all 16 memory 33 | uume - - CAL c
contents have been displayed you will hear the END sound - {
and your score is displayed. 34 (3 3 3 RSTO|l O
PROGRAM @) 35 (9> 9 40 JUMP =
address | command| machine address | command [machine 36 JUMP F 41 <O 0
00 TIA 8 18 O 0 37 < 1 42 5> 5
01 <O 0 19 |JUMP| F 38 (<6 6
02 |CH 2 1A |3 3 39 {CAL E
03 |TIY A 1B <9 9 3A |'SHTST 9
04 [P F 1C | CH 2 A) Key in the program and check it.
05 | KA 0 10 |ATA 9
06 | JUMP F TE (D 1 B) Load various numbers into 50-5F .
07 <O 0 1F | CH 2 .
o9 « © 9 [CAL - Examg’Oe.51 52|53|54155 oBIBCIBD|5E|5F |
09 | JUMP F 21 LONS A 02|04 100] O =|oh
0A |3 3 22 laiy | B8 ol ¢l 4l Al FL 3 tlL 1l el 8l 6]
08 <> E 23 |<F> = = W5l &[0] @& o) W3 & ———————
0 MA 5 24 |uuvpPl F
Og AO ? o5 [0 0 C) Press RESET, 1, RUN to start the program.
0OFE TIA s 06 (55 5 D) If a number key is pressed while a memory value is being
oF |y = o7 CH o displayed, the key value is added to the memory value. If
10 CAL £ 58 Ab] the answer is binary (1)0000, i.e. there was a carry which
17 TIVR c 59 CAL c left O in the register, you score one point.
10 KA 0 oA {ENDS v NOTE: For your key value to be recognized, you must
UMP = hold the key down until the HEX. LED is turned off.
13 JUMP - 2B JU There is a blip sound each time you get the answer wrong,
14 <2 2 2C 1< 2 a beep if correct.
15 [<E> E 20 <& B8
16 M+ 6 2B | TIA 8 159
17 |CIA C 2F 1< 0O

3
‘ | Move 0 to Ar. ES ! Check if the answer is 0. I cacrsto] | Turn off HEX. LED.
NO He a0
g‘ { Store O in Br (= score). Ar;;er
% ‘* Yr*zr .
% ! 1D
| | Set pointer to 5F. [Artr—ar | | ifitis add 1 to score.

l 39
2
J [cacsets] || siin.
B
} Beep.
: } Deduct 1 from pointer.
E Display contents of)
i current address. } Telsutelsf 16 . -
va
displayed. I O-—sAr- |
: ; l 3 || Pause for 0.1 seconds.
| | i T CAL TIMR |
“ Pause 1.6 seconds. ! 'SI:(I'SSIE"’\"SBBV i CAL-TIM |
; ‘l sound, STOP. — 1 2
| I —
31 | Check for key input.

NO ‘

YES

| Add key value to value
" of memory.

Hex addition is difficult, isn't it?

Particularly when you are up against the clock !
This game is good practice for improving your
computer addition skills.

No.94 Gunfight Game

© @
This game is for two players. When you press (RUN) the address |command | machine address | command | machime

middle binary LED (R3) will light up after a short pause. The 1A | T1Y e 34 (3> =y
two players use (4) and (7) as “triggers’”. The player who 18 | 35 [(3>
shoots first is the winner. 1c lka

36 TIY
Display if (4) wins: = ® @® @] 10 | JUMP

[) 37 |
Display if (7)wins: ® ® © @ ® = TE <1 38 [CIA
TF C>

39 |4
If you press a key before the middle LED comes on, you are 20 lcia 3A | JumP
"“trigger happy’’ and you will hear the ERROR sound. 21 4>

3B [<&
22 | JUMP 3C <O
23 <25

° 3D |JumP
° 24 [(&

IE [<4
25 | JUMP 3IF [<7
Note: Due to the nature of the KA command, (7) has a slight 26 <2 40 [CIA
advantage. 27 Nl

41 <7
28 |CIA 42 | JUMP
29 <7D

43 <O>
PROGRAM @ 2A L JUMP 44 (5
address | command "‘ggg'e“e address |command oR 15 45 TIY
00 |THA 0D [2C | 46 <
01 F> Ok CAL 20 TIY 47 [CAL
02 [CAL OF TIMR 2E <O 48 SETR
03 “TIMR 10 CH 2F [CAL 49 [CAL
04 CH 11 AlA 30 SETR 4 A ERRS
05 K A 10 (FD 31 [CAL 48 JUMP
06 JUMP 13 JUMP 32 ENDS 4C 4>
07 0> 14 <O> 33 JUMP

4D |1
08 [15 | <4
09 [JUMP 16 | TIY
OA <3 17 <3
0B 6> 18 [CAL
0C [TIA 19 SETR

If (4) firestoo soon: @ = @
If (7) firestoosoon: ©® ® @

MNM-2MO>PO-TITNOTINTONNTAEOO=TOO >
WHATMOM-M=2T00CTNONDTOATTEOC I WW

NOTE: “port R1" is another way
of referring to binary LED 1.

® 6 ® 6 @ @ 0-PORTR
R6 RS R4 R3 R2 R1 RO

OO wmMmOomMmMoNO MM
_,Mw>x>>hoTTToONO MW

\’ A) Key in the program and check it.

: FLOWCHART
ii (sTART -
| T) Set Guinter B) Press RESET, 1, RUN to start the program.
i I = to £ 8.
i —Ar ! . .
i i — | Pause for] C) Aftier a few seconds LED 3 will light up and you have to
1 [oaC Tom \‘I . 1.6 seconds. © Wait uniti! press (4) or (7) — quickly!
i —] " key pressed. Be patient—it may take a short time for R3 to come on.
t‘ ArZBr i Store contents 0 .
1) Yro2zr i of Arin Br. | Was key # ® ® ¢ - & & O
| - T (4)? PortR 6 5 4 3 2 1 0
‘Lx I KroAe] 1 Was keV # . . .
i p7e This game will test your reflexds. Two players wait for the
| 1f 7, set light to come on, then press their triggers. You have to be
‘ Fo EE 07U pointer to ; P
L 1| I pointer quick, but you must not anticipate.
i ‘I ‘ Turnon LED O
) ey ry | .
R [__caserr] fore enp D) Press RESET, 1, RUN to play again.
1 e Pause for 0.4 l 4 sound, STOP.
| seconds. 2
e t cacTvR ‘ i caLenos |
1. T '
| = E |
yrzr
1 & Deduct 1 Y ’ Set pointer .
L__ar+f=ar ' omar | L Bvr | 'tLEDS.] i
3 3 [1Yr I | Set pointer to port R1. !
1; Hsit# (4)? I——————-»l 4
‘ " CAL SETR I ! Turn on pointed LED.
19
% | Turn on R3. Pisit#(7)2? | CAL ERRS | | ERROR sound, STOP.
pR——
L a8

-162-

No0.95 ‘““Slot Machine’’ Game

This program provides a simple slot machine game. The dis-
play is divided into 3 parts, as shown in the diagram.

¥ G i .
? ¥ @ @ e 5 o ®
(a) (b) () address | command| MaShire address | command| Machine

1C | AM 4 36 |CI1A C

At (a) only 3 binary digits are displayed; if the number dis- 10 | TIY A 37 <3 3

played there is larger than 7 you have to guess what it is. 18 | <D D 38 | JUMP F

If the three numbers in the three sections match perfectly you 1 |MA 5 39 |2 2

\(NI)H hear t}/l\{ohEND sogr’lldg. If (zij) matches (b), or (b) matches o0 |AIA 9 3A | E

c}, you will hear one sound.

When the game starts the display changes at high speed. First 212 i\j[\; 21 gg ,\/f/TY g
press (1) to freeze (a), then press (2) to freeze (b), then press

(3) to freeze (c). 23 |AOC 1 30 1< 1

24 [CAL E 3E (M- 7

25 DSPR D 3F [CIA C

PROGRAM @ 2 26 | TILA 8 40 <O 0

address |command | machine address | command]| mashire 27 (> = 41 JUMP =

00 |[T1ivY A 0E [<O> 0 28 | KA 0 42 (<4 4

01 <D D OF [2 29 |CIA C 43 {6 6

02 [MA 5 10 |CY 3 2A [(2> 2 44 [CAL E

03 [ATA 9 11 KA 0 2B | JUMP F 45 ENDS 7

04 [1 172 |CIA C 2C < 1 46 |C1Y D

05 {AM 4 13 < 1 20 <D 7 47 <P F

06 |AIlY B 14 | JUMP F 2E |MA 5 48 | JUMP F

07 [1 195 <O 0 2F JATA 3 49 (3> 3

08 |AO 1 16 |<O> 0 30 [1 4A |<{B> =

09 [CAL E 17 | TIY A 31 AM 4 a8 {CAI_ E

OA DSPR D 18 |<(E> E 32 JAO 1 AC | '\DSPR D

oB |CIlY D 19 |MA 5 33 [TIA 8 4D | JUMP F

0C [<O> 0 1A |ATA 9 34 [P F 4E (<4 4

0D |JumpP F 1B 1< 1 183- 35 | KA 0 4F [B

FLOWCHART
(C_START)
Ep— X Set ——— 1C — 2
| Dsvr]} pointer [pYy)] I — |
l 2 to 5D. l - 1 "
| M—Ar | | D-Yr | { K—Ar]
! o | Add 1 T = =
i Ar+1—Ar .| to 1ed [M= AT 1 — A+ 37
| Ar—M] { Ar+1—Ar] fo =0 [M—>Ar]
! % Add 1 { 2 1 ic
[Yr ¥ 1—Yr |} to l Ar—M R | Yr+ 1—-Yr]
! m PO I} 3 ng\?al;uyt
| Ar—0p [}Qisetay 1 Ar—Op || of 5D/
on HEX.
{ 03 on HEX. 1 2 e
[cacoser | }Ei’g[ay [cacoser |
08 on binary. l 26
‘+ Check FAT
YES NO 10 } ;)ofrfter l 2!
0.
I Are] } Move 0 r K—Ar I l Check if YES
l 11 to Ar. J key (2& NO 4B
presse
l K Ar | check it =~ o), [cacosPr__]
12 1 key (1).
Ves=—Ar 1T | Pressd. I MEAF I 1o}
17 NO =
| E—vr | | Ar+ 1—Ar 11 1f Yes,
d
| 19 | 1f Yes, | 3 | 23d1to
| M—Ar] dd 1 to [Ar—M | display.
l 1A SE. l 30
| Ar+ 1—Ar | [Ar_l.op |
|

|

——

Move F
to Ar.

Check if
key (3)
pressed
(c).

Check if
contents
of 6§D/
SE (or
5€/5F)
match.

Foreach
match
generate
END
sound.

Display
on bi-
nary
LEDs,
STOP.

A) Key in the program and check
it.

B) Press RESET, 1, RUN to start
the program.

Press 1, 2, 3 to freeze thea, b, ¢
positions.

C) If you are not lucky at first,
try again by pressing RESET,
1, RUN.

This “‘slot machine” behaves very
much like those that you see at
amusement arcades. But you can
only play for fun—the Micro-
computer Trainer has not been
programmed to give cash prizes.

4
%

SN
Eo I

8 4 2 1
e &+ o » [

(a) (b) (c)

If (a}, {b) and {c) all match you will
hear the END sound twice.

Don’t forget that (a) may have an imaginary digit if the num-
ber is larger than 7. So if you think you have a match between
(a) and (b) but the END sound is not generated, it is because
the number in (a) is larger than 7.

No0.96 Memory Tester
Before running the program, load numbers into addresses
50-6E and try remember what is there. When the program A) Key in the program and check it.
starts, enter the key value that you think matches the value
in each address, starting at 50. If you make a mistake, you B) Load some numbers into 50-5E.
have lost; if you get them all correct you will hear the END J
sound. In both cases your score will be displayed. Example:
PROGRAM 50151/52!53|54|59%|56|57] |
address | command| machine address | command| maghine 3| 4] 5| 6] 7| 8] 9] A
00 TIA 8 1A CAL E }
01 |<o 0 e |lsuTs| o = ¥d <o) @ ¥o] & ¥
02 | CH 2 1C | CH 2 C) Press RESET, 1, RUN to start the program.
03 TIY A 1D AlA S
04 <O 0 16 |1 1 D) Press a number key for each address. If you choose the
05 | KA 0 1F | CH 2 correct number, the value will be displayed and you score
06 |JUMP F 20 |[Ar1Y B 1. Continue pressing keys until you make a mistake or
07 < 0 21 a5 1 hear the END sound.
08 (5> 5 50 Cly D Example: . Top score
09 | KA 0 23 | F $o) &A Yol 49 ¥ol Yol ———— [/ =F
OA JUMP F 24 JUMP = The score is displayed at the end,
0B [<1> 1 o5 0> 0 or when you make a mistake.
0C (<O 0 56 |5 5 Notice that in this program, deduction is carried out by using
0D | JUMP F CAL CMPL, followed by an addition,
OF <9 9 28 | ENDS / Example:
10 [CAL E 29 fCH 2 Method 1 Method 2
1 CMPLI 4 2A RO ! 6 0110 0110 = 10071 (complement)
12 | M+ 6 22 32U>MP g -6 ~0110 +0110
13 ClA C PV T a4
14 {<F F 2D | @ B = 0000 =1
15 JUMP A 2E [CAL E In method 2, the values are the same if the answer is F.
16 |<2> 2 2F ERRS 8
17 <& E 30 |JUMP F
18 | MA 5 31 <2 2
19 | AO [32 |« 9 -165- L

FLOWCHART Notes:
(__START_)
! LY 1A
' O-=Ar I } Set score=0. " CAL SHTS I } Blip.
: 02 1 1C
ArZsr] Store score i ArEr
Yr;‘_.‘Zr in Br. YT‘:ZP‘ 5
! w8) I 1D
I O-s¥r |] ?sts%omter l TTArT 1DAr | ,:‘C%?e? to
»| : T e
L K—Ar - Wait until SUOTARRBr
6 } key pressed. Yrozr
NO 1 2 | Add 110
_l'__" OSi [yesa=ve] | Dointer.
K—Ar Wait untit |
0A] key released. } S;:f‘(;: if all
sed,
«m = gues:
YES
10
I caompe]
19 Cognpare key yroze
and memory .
I MEAC—Ar I values. l 2A Ec'g,rael%‘lt%eP.
13 l Ar—Op]
Ars# Fe > — 5
NO %
| M—Ar] | Display
l 9 l conte:c;cs of e
: point -
[ars0p] o [criemms |
I
30

-166-

No.97 Store Random Numbers (0-9) in memory

This program stores a random number {0-9) in each of the Key in the program and check it.
addresses 50-5F.

Press RESET, 1, RUN to start the program.

Watch the HEX. LED while you press any number keys.
PR : A ;
OGRAM Each time you press a key a number is displayed. This
number is stored at the pointed address. Write these
numbers down in sequence.

address |command [machine address | command

00 TIY 19 [
01, [<O> 1A |<4>
02 {TIA 18 [JUMP
03 [P 1C <O
04 |[AILA 10 <25
05 |1 18 |CH
06 [CH 1T | AM
07 |KA 20 (AlY
08 jJUMP 21 <>
09 |1 22 [ClY
OA [23 <0
0B | CH 24 1 JUMP
0C | AO 25 | <1
0D |CH 26 |<6>
0E | KA 27 CAL
OF 28 ENDS
10 29 | JUMP
11 2A (2>
12 2B <9
13
14
15
16
17
18

At the end read out the addresses 50-5F and compare with
the numbers you wrote down. They should be the same.

The command (F — Ar) sets the initial value for generating
random numbers. When 1 is added, Ar contains 0. The range
of numbers is limited to 9 at address 16, where a test sends
the program back to address 02 if 9 has been reached. In
program 99 you will find that the range is extended to 1-E
when you want to generate random musical sounds.

ONTINMO —~~TNMToO-~TEAENNMOTAOI

MOONMOTMTM-=TMON-=NOG=>TTON >0 T®O Il

FLOWCHART
C “START__)

: 00 Set pointer A
[O—-Yr I } to 50. ArEer
- - xr2zr
I P—{Ar St Z
-~ Al I } initial value
o — 1]
[Arsi—=ar] 1Add1to
% Ar.
ArZBr } Store in Br.
YroZr
] 07
I Y I Check if
i
08 pressed.
YESdown b
‘ 08
ArBr } If Yes,
Yr2Zr restore Ar.
T o= Dol il CAL ENDS
" ISD ay
I Ar—0Op] } random no. “
I 0D
ArZBr } Store Ar o
vroze again.
—] 0E
Wait until
I K—»Ar j (key
oF - released.
ey down
NO

YES

If no key pressed,
restore Ar.

Check if Ar has
reached 9.

Restore Ar.

Store contents of Ar
at pointed address.

Add 1 to pointer.

Test if all addresses
loaded: Yes— END
sound and STOP.

No0.98 Guessing Musical Notes

Find out just how musical you are.

In this game you will store notes, (1-E), in 50-5E. When they
are played back, you guess the note in turn and press the
corresponding key. If you get them all correct you will hear
the END sound. When you make a mistake you will hear the
ERROR sound and the program will stop. In both cases your
score will be displayed. Start over until you can guess them all.

Remembering the sequence of the notes will help you get a
little farther each time you play. When you have guessed all
the notes you stored, enter them in a different sequence and

play again.

The characters 0 and F do not generate notes.

PROGRAM @ @
address [command | machine address | command| mashine
00 TIA 8 10 KA 0
07 B> 5 11 JUMP F
02 CAL E 12 1> 1
03 [CHNG 5 13 <7 7
04 TIA 8 14 JUMP F
05 O 0 15 <1 ’
06 CH 2 16 <O» 0
07 TIA A 17 {CAL E
08 <O 0 18 SUND B
09 MA 5 19 [CAL £
OA CAL E TA CMPL 4
0B [SUND B B M— 6
oC KA 0 1C ClA C
0D JUMP = 10 > F
o= <O> 0 (= JUMP F
OF C> C 1F (3> 3

-169-

Q
address | command| mashine
20 <D 9
21 CH 2
22 [ALA 9
23 <1 1
24 CH 2
25 [CAL E
26 CHNG 5
27 [CAL E
28 TIMR C
29 [CAL E
2A CHNG 5
2B |AlY B
2C <1 1
20 |ClIY D
2B | <P F
2F | JUMP F

A)

@

address | command | machine
30 [<O» 0
31 (D 9
32 [CAL E
33 ENDS 7
34 | CH 2
35 | AO 1
36 | JUMP =
37 (3> 3
38 [« 6
39 [CAL E
3A ERRS 8
38 | JUMP F
3C <3 3
30 <4 4

Load codes for various notes
(1-E) in BO-bE.
Example:

= Y] «d @ o] = o]

) eee f,“,

B) Key in the program and check it.

C) Press RESET, 1, RUN to start.
The first note will be played.
Press the key that you think
corresponds to the note played.

FLOWCHART
Set
timer
value Check if value
0.6 of memory &
seconds, key value
store in match,
Ar’,
Set - 39
score ;
t0 0, CAL ERRS |
store | 38
in Br.
2 | 1f Yes—
Set. l d 15 If all notes
| pointer _Jjaddito
0 50 ! the score. correctly
. 1 }guessed,
! END sound.
Play I
‘ note
" {a).
Display
i i score, STOP.
’ Wait Get timer
until - - - | value from
key n L CAL TIMB 1 Ar’, start
) pressed. ‘[2 l timer.
[cacchwc]
Wait
until [Y 4 Add 1 to
key pointer,
released. check
< ¥+ re = | forF.
YES
17 NO
[CaCsung] | Convert
t key
value
toa
note.
(a) Play note for code stored
at pointed address.

No.99 Store Random Numbers for Musical Notes in Memory

With some of the games that you have programmed you know
in advance what is stored in the memory. That gives you a
rather unfair advantage in guessing. The purpose of this
program is to show you how to store random numbers in
memory (1-E) so that NOBODY knows in advance what is
in there.

PROGRAM
address | command m(a;gggne address | command| machine
00 TIY A 16 ClA C
01 <O» O 17 <E> E
02 TIA 38 18 JUMP =
03 <O 0 18 <O> O
04 AlA 9 TA <45 4
05 <12 1 18 JUMP F
06 CH 2 1C <O> 0
07 KA 0 10 [<(2> 2
08 JUMP = 1E CH 2
09 1> 1 1F AM 4
0OA [<5> 5 20 AlY B
oB CH 2 2 1> 1
oC |AO 1 22 CilY D
0D | CH 2 23 <O» O
Ok KA 0 24 JUMP F
OF JUMP F 25 (1> 1
10 <12 1 26 (6> 6
11 <E> E 27 CAL E
12 JUMP F 28 ENDS 7
13 <O» 0 29 JUMP =
14 (E> E 2A (2> 2
15 CH 2 2B (9> 9

~171-

Key in the program and check it.
Press RESET, 1, RUN to start the program.

Press any number 16 times. Each time that you press a key
a random number will be displayed and stored in memory
at the pointed address.

When the END sound is heard, random numbers (1-E)
have been written into all of the addresses 50-6E. Read
the addresses to check.

FLOWCHART
(START)

|

00 H s
Set pointer s
[Osvr]! %o 50. Ar—Br
02 1‘ Set first ==
O | Setlirs
I DAL l i random no. YES *
- 1 7 Ar & £
, to
[Ar+i—Ar |1 random NO
1 06 store. X 1€
ArzBr . | Sto(;e AnZEr
- i random
Ye2Zr " no.in Br. A
T y 1 1E
| K—AT || Testif key l il]
| pressed. I 20
| Yr+4—-yYr |
22
Ar8r | Ye,fd_oﬁtﬁgn YE
ra .
Yr2zr ! to Ar. Mo 2
T . I CcaCenos]
- | Display —
l Ar—0Op]l random no. ”
| 0D
Ar7Br | Store in Br
Yroze ' again.
——] 0E
[K—Ar]| wait until
oF | key released,
m NO
YES

Restore random no. to Ar.

Check if random no. has reached E.

If Yes, return to set count to O.

Restore random number to Ar.

Move random number to
pointed address.

Add 1 to pointer, test if it has
gone past F, that is, is O again.
If yes, END sound and STOP.

“172-

No.100 ‘“Rat Bashing’’ Game

For this game any number in the range 0-6 is loaded into the
addresses 50-6E. When the game starts the “rats” come out of

their holes (binary LEDs) s
loaded, starting at 5E. When

press the corresponding key (0-6) to bash it. Each time a “rat”
appears the pointer is reduced by 1, and when the “rat” at
address 50 has emerged the game ends.

PROGRAM &
address | command| machine
0O |TIA 8
01 <O> 0
02 [CAL E
03 CHNG 5
04 TIY A
0b <E> E
06 |MA 5
07 CYy 3
08 {CAL E
09 SETR]
OA CY 3
0B |[CH 2
ocC TIY A
0D | F
Ok KA 0
OF JUMF F
10 <3 3
11 (9> 9
12 | CH 2
13 KA 0
14 JUMP F~
15 (3 3
16 5> 5
17 M- 7

Q @
address | command| machine address | command | machine
30 [C/-\L E 3F JUMP F
ified by th q h 31 ENDS 7 40 <O 0
pecitied by the codes you have 32 luuver| F a1 <> =
you see a “rat”’ (the lighted LED), 23 5 42 |on 5
34 2> 2 43 JUMP F
35 CH 2 44 (2> 2
© 36 |JUMP F 45 <6 6
address | command mf:’gg'e”e 37 <O> 0 46 KA O
18 [CIA C 38 [<&> E 47 | JumpP F
179 <O 0 39 [TIA 8 48 <O 0
1A JUMP = 3A <O 0 49 (67 6
1B (2> e 3B {CAL E 48 JUMP F
1C |6 6 3¢ [\Tvr | C 4B <4y 4
10 |caL = 3D [AlY B 4Cc | 6
1E {SHTS g 3E |<F> F
1F {CAL E
20 |'CHNG| 5 A) Key in the program and check it.
21 AlA g
22 1< 1 B) Load various numbers (0-6) at addresses 50-5E.
23 AO 1
Example: | 20|51 |52(|53|54 (55|56
24 {CAL = ST e o 5T 04
25 CHNG 5
26 |maA 5 ,
M .
27 |cvy 3 == W0O] e
28 {CAL e C) Press RESET, 1, RUN to start, Then watch the binary
29 RSTR 2 LEDs,
2A cY 3 Score is
28 |AlY B ¢6 06000 displayed
2C Press one of the keys (0) to(6), corresponding to the LED
2D JUMP F that is lit, while it is on.
2B 1< 4 If you are able to “catch all the rats” by pressing all
2F 1<{6 B

_173- the correct keys, your score will be F.

FLOWCHART

% 13
(C_sTART) - 3 2
0 t ar l } Check for key pressed. A’«-BF :
- \ 14 Yr2zr
| QAL - | { Move O to Ar. Iy i
I | @ VES o .
CAL CHNG .. | |! setth in Ar'. ArS
l I | Setihescorein AF I MR 2hn l 1 Yes — check for match be-
g - o 18 | tween LED pointer and 2 9
l EmaYr] | Set pointer to 5E. W ‘ key pressed.
YES | O—Ar]
fl 08 NO D T =
L M—Ar] \ CAL SHTS] } Yes — blip. [] CAL TIMR]
_{ 7 | Use code from pointed l 1= l 30
| ArZyr] i address to '‘pop up rat’”.on ﬂ “CAL CHNG] | Yr+ EmeYr |
l ® | an LED. 1 - ”
[caserm]| [Art1-ar]
i 0A l 23 | Add 1 to score and display.
| AT | l | o Ar-0p |
‘I' o8 . Store pointer. l 24
ArZBr ; [caCcane] T
Yrozr \ | - Q
g
! 0C | M—s AT] _
F=Yr l l o p
e [— | Py | Get LED pointer from | |1 —
I Py l 1 memory again, remove rat. —Ar I
: 8 B
oF | Check for key pressed. ﬂ TAL FOTR I 4/
ey down O 1 24 YES NO
YES 12 | APCTYT | "
ArZBr | Yes — restore address 5 | Red d i
vr=zr ' pointer to Yr. | Yr+|1:-»\/r ,BI R uce address pointer by [l CAL ENDS . 1
T "
90 | ’
carry ‘
NO YES
~-174-

i Store address

pointer.

; Pause 0.1 seconds.

Reduce Yr by 1,

" repeat timer ioop
s until Yr=0.

" Restore address

pointer to Yr.

. Wait for key

release.

- END sound and

- STOP.

| ;

@® Appendix

CONTINUED FROM PAGE75:

Some examples to help- you to understand program No. 38.
Numbers are in hex except where stated:

CARRY AT? :— 0B 13 1D 23 3C
b+4 =9 . No —_ — —
5+b = A No A+6=10 — No —
binary Yes
9+7=10= (1)0000= O 0+6=6 6+6=C
Yes — No No —
A+A=14=(1)0100= 4 4H46=A A+6=10
Yes e No Yes —
F+tE=1D=(1)1101= D D+6=13 H#C=F
Yes — Yes — No
F+F=1E=(1}1110= E E+6 =14 44C=0
Yes — Yes — Yes

CONTINUED FROM PAGE 129:

A reminder about complements:

T is less than 2. The program checks this by comparing the
complement of 1 with the complement of 2. Remember that a
number plus its complement always adds up to F {15 decimal).
The complement of 1 is 14. The program now takes this com-
plement and adds it to 2; this answer generates a carry. (14 + 2
= 16 decimal or 10 hex, which is greater than F.) Because the
result of this addition generates a carry, then the complement
involved is greater than the complement of 2. The smaller the
number, the larger its complement, therefore, the number
complemented (1) is smaller than 2.

~175-

CONTINUED FROM PAGE 127:

A different kind of explanation concerning program 73:

Suppose that in 50-5E there is the following data:— 0, 1, 2, 3,
a,. D, E. You require this program to reverse the con-
tents so that they look like this:—E, D, C,B..... ,1,0.

To do this the program uses two loops. The first, or INNER,
loop, uses a count that is stored in Ar’. In this loop each
adjacent pair of numbers is examined to see which is larger
(the technique used is illustrated and explained in program
48). If the first of the pair is smaller, the two are swapped
round and then the first pair is examined. In our example the
process will look like this: —

Step 1 0,1,2..... ,D,E

Oislessthan 1,soweget1,0,2..... ,D,E
Step 2 1,0,2..... ,D, E

Oislessthan 2,soweget1,2,0..... ,D,E
and so on,

until after step 14weget1,2,3..... ,E, O

That is the end of the first set of executions of the INNER
loop. One is now added to the count for the OUTER loop,
which is stored in 5F, and this outer loop is repeated until its
count reaches O (carry by adding 1 to F). The second set of
executions of the inner loop will work like this:—

Step 1 1,2,3,..... E,O-—m 2,1,3,..... E,O
Step 2 2,1,3,..... E,O - 2,3,1,..... E.O
Step 14 2,3,4,..... 1,0 < 2,3,4,..... 1,0

So gradually the numbers are re-arranged with the sorted
values appearing at the lower end. In our example, each time
the outer loop is executed there is one less physical sort to do,
because more and more of the pairs are already in the right
order. If you run the program with (2), (RUN), you may be
able to hear it getting faster and faster as it goes through the
loop each time — each loop is doing less work each time,

Program Title

adda-
ress

command

machine
code

add-
ress

command

machine
code

adag-
ress

command

machine
code

add-
ress

command

machitne
code

add-
ress

command

machine
code

Program Title

machine

machine

machine

add-

machine

aod- | command |maghine aad- | commana |mMaShlr ada- | command | maghir aad. | commang |machir oss | commana |mactir
00 10 20 30 40
01 11 21 31 41
02 12 22 32 42
03, 13 23 33 43
04 14 24 34 44
05 15 25 35 45
06 16 26 36 46
07 17 27 37 47
08 18 28 38 48
09 19 29 39 49
0A 1A 2A 3A 4A
oB 18 2B 3B 48
oC 1C 2C 3C 4c
0D 10 2D 3D 4D
OE 1E 2E 3E 4€
OF 1F 2F 3F 4F

-177-

ELECTRICAL PARTS

RESISTORS: Resistors are the brown tubular

(FWI%] objects with colored bands around them.
They are called resistors because they resist

the flow of electricity through them. The

—NVW— amount of strength a resistor has to resist
the electricity, is measured in units called

OHMS. Each registor in your kit has its strength (in ohms)
listed near it. The K after some of the numbers stands for thou-

sands. So the ““strongest’ resistor in the kit has 56K or 56,000
ohms of resistance.

CAPACITORS: Capacitors store and release

) electricity as a circuit needs it. Their ability
VER\ 10 store electricity is measured in units called
— FARADS, but since a farad is a very large

amount, most capacitors are rated in micro-

farads (uF) and pico-farads (pF). A micro-
farads is one millionth of a farad and a pico-fared is one millionth
of a micro-farad. The capacitors used in this kit are ceramic disc
type and are rated in both micro- (uF) and pico-farads (pF).

LED: Look at the display area of the kit.

A4~ You will see seven diodes in a row, and one

LED shaped as figure 8. The HEX. LED

actually consists of 8 LEDs. Any desired

number and most of the letters can be dis-

played with 7 LEDs, The 8th LED is for de-

cimal point. LED stands for light emitting diode. The LED
does the same thing as any other diode, except that it gives off
light when the electricity passes through it {in the right direc-

tion). LEDs last longer and use less electricity than regular light
bulbs.

TRANSISTOR: Transistors have three con-

nections (instead of two like the other parts
_@Z you have seen). In your kit, the transistor

acts as an amplifier to make things louder.

PARTS LIST

Note: Most of these parts are already connected to the Com-
puter., This parts list will serve to remind you of what parts

make up your kit.

’

Description

Description

Battery Holder for 6 AA Cells
Battery Terminal, ''+"
Battery Terminal Spring, “'—"
Capacitors:
100 pF, ceramic disc type
330 pF, ceramic disc type
0.1 uF, ceramic disc type
Frame for Panel Board, Left
Frame for Panel Board, Right
Key Contact (20)
Key Switch with Key Top (20)
Large Integrated Circuit, TMS1100
Light Emitting Diodes for Binary Digit Display (7)
Light Emitting Diode for Hexadecimal Digit Display
Nuts 3mm (46)
Panel Board
PCB for LED
PCB for TMS1100

Resistors:

100 ohm

2.4 K (14)

3 K

b.6 K

30 K

56 K
Resonator, 400 kHz, KBR400B
Screws, 3 x 6 mm (20)
Screws, 3 x 8 mm, black (6)
Speaker, 57mm, 8 ohm
Speaker Holders (2)
Spring Terminals (63)
Transistor - 2SC 2320 NPN, silicon
(or 25C9456 or 2SC828 or 2SC536 or 2SC181 5)
Wires

Yellow 10cm (26)

Black 18cm (b)

Red 30cm (1)

. RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U.K.
91 KURRAJONG AVENUE PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
6A4 MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7JN

Printed in Japan

